YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Direct Shear Strength Prediction for Precast Concrete Joints Using the Machine Learning Method

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 005::page 04022026
    Author:
    Tongxu Liu
    ,
    Zhen Wang
    ,
    Zilin Long
    ,
    Junlin Zeng
    ,
    Jingquan Wang
    ,
    Jian Zhang
    DOI: 10.1061/(ASCE)BE.1943-5592.0001866
    Publisher: ASCE
    Abstract: Precast segmental concrete beams (PSCBs) are being increasingly applied in bridges worldwide benefitting from the advantages of accelerated bridge construction. It is of importance to accurately predict the direct shear strength (DSS) of precast concrete joints (PCJs) for ensuring the safe structural design of PSCBs. However, existing prediction models of PCJs’ DSS are deemed inaccurate and unreliable when numerous parameters are varied in wide ranges. This study aims to establish an accurate and reliable prediction model for PCJs’ DSS using a machine learning algorithm called support vector regression (SVR). A PCJs’ DSS database of 304 test results with 23 input parameters was assembled from the literature. A model training procedure was conducted through stratified train-test split, feature scaling, feature selection, and two-step grid-search hyperparameter tuning. A new correlation matrix–based feature selection method was proposed, and three SVR models with different feature combinations were trained for validating the selection method. The trained SVR models were experimentally validated and compared with six existing mechanical models through two groups of performance indicators. A reasonable interpretation for the SVR model with the selected features in the proposed selection method was done using the combination of partial dependence (PD) and individual conditional expectation (ICE) plots. The results show that the SVR algorithm can be deemed feasible to accurately and reliably predict the DSS of PCJs. The proposed feature selection method is beneficial to the prediction performance of the SVR model. It is impossible for the typical mechanical models to achieve a similar prediction performance of the SVR model. The influence of each input parameter on the DSS of PCJs is recognized and depicted, which can offer useful information for further developing new mechanical models for predicting the DSS of PCJs with higher prediction performance in future research.
    • Download: (3.713Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Direct Shear Strength Prediction for Precast Concrete Joints Using the Machine Learning Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282527
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorTongxu Liu
    contributor authorZhen Wang
    contributor authorZilin Long
    contributor authorJunlin Zeng
    contributor authorJingquan Wang
    contributor authorJian Zhang
    date accessioned2022-05-07T20:30:29Z
    date available2022-05-07T20:30:29Z
    date issued2022-5-1
    identifier other(ASCE)BE.1943-5592.0001866.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282527
    description abstractPrecast segmental concrete beams (PSCBs) are being increasingly applied in bridges worldwide benefitting from the advantages of accelerated bridge construction. It is of importance to accurately predict the direct shear strength (DSS) of precast concrete joints (PCJs) for ensuring the safe structural design of PSCBs. However, existing prediction models of PCJs’ DSS are deemed inaccurate and unreliable when numerous parameters are varied in wide ranges. This study aims to establish an accurate and reliable prediction model for PCJs’ DSS using a machine learning algorithm called support vector regression (SVR). A PCJs’ DSS database of 304 test results with 23 input parameters was assembled from the literature. A model training procedure was conducted through stratified train-test split, feature scaling, feature selection, and two-step grid-search hyperparameter tuning. A new correlation matrix–based feature selection method was proposed, and three SVR models with different feature combinations were trained for validating the selection method. The trained SVR models were experimentally validated and compared with six existing mechanical models through two groups of performance indicators. A reasonable interpretation for the SVR model with the selected features in the proposed selection method was done using the combination of partial dependence (PD) and individual conditional expectation (ICE) plots. The results show that the SVR algorithm can be deemed feasible to accurately and reliably predict the DSS of PCJs. The proposed feature selection method is beneficial to the prediction performance of the SVR model. It is impossible for the typical mechanical models to achieve a similar prediction performance of the SVR model. The influence of each input parameter on the DSS of PCJs is recognized and depicted, which can offer useful information for further developing new mechanical models for predicting the DSS of PCJs with higher prediction performance in future research.
    publisherASCE
    titleDirect Shear Strength Prediction for Precast Concrete Joints Using the Machine Learning Method
    typeJournal Paper
    journal volume27
    journal issue5
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001866
    journal fristpage04022026
    journal lastpage04022026-18
    page18
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian