YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Variational Bayesian Approach to Self-Tuning Robust Adjustment for Joint Inversion of Nonlinear Volcano Source Model with t-Distributed Random Errors

    Source: Journal of Surveying Engineering:;2021:;Volume ( 148 ):;issue: 002::page 04021032
    Author:
    Leyang Wang
    ,
    Qiwen Wu
    DOI: 10.1061/(ASCE)SU.1943-5428.0000391
    Publisher: ASCE
    Abstract: Variance component estimation (VCE), herein called joint inversion, is a widely used approach to weigh the contributions of different data sets. Traditionally, the random errors of observations in VCE are modeled as Gaussian. However, in many geodetic measurements and sensor technologies, the observation data are non-Gaussian; therefore, the joint inversion with a more general heavy-tailed error model is preferred. Another issue is that the VCE deduced from the existing approaches may be not an interior solution, which means that the estimates may lie outside of the parameter space. Although there are some works on VCE in the Gaussian error model with equality or inequality constraints to mitigate this effect, to the best of our knowledge, there does not exist any work addressing the interior solutions of variance components for the heavy-tailed error model. In this article, we consider these issues for the first time and describe the behavior of multiple data sets using the joint functional model, which allows for the nonlinear modeling through nonlinear (differentiable) observation functions, where the random errors are modeled as Student’s t-distributed. To address the estimation problem, an iteratively reweighted least squares (LS) approach to self-tuning robust estimation of joint functional model parameters, the variance components, and the degree of freedom (df) of the Student’s t-distribution is derived based on a variational generalized expectation-maximization (GEM) algorithm. The proposed algorithm is computationally cheap and easy to implement. The performance of the algorithm is evaluated by means of Monte Carlo simulations of the joint volcano source model. Furthermore, the suitability of the research model and the proposed variational GEM algorithm is investigated within a numerical experiment involving the multisource modeling and adjustment of real data sets of the 2015 Calbuco volcano eruption.
    • Download: (3.204Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Variational Bayesian Approach to Self-Tuning Robust Adjustment for Joint Inversion of Nonlinear Volcano Source Model with t-Distributed Random Errors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282509
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorLeyang Wang
    contributor authorQiwen Wu
    date accessioned2022-05-07T20:29:47Z
    date available2022-05-07T20:29:47Z
    date issued2021-12-17
    identifier other(ASCE)SU.1943-5428.0000391.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282509
    description abstractVariance component estimation (VCE), herein called joint inversion, is a widely used approach to weigh the contributions of different data sets. Traditionally, the random errors of observations in VCE are modeled as Gaussian. However, in many geodetic measurements and sensor technologies, the observation data are non-Gaussian; therefore, the joint inversion with a more general heavy-tailed error model is preferred. Another issue is that the VCE deduced from the existing approaches may be not an interior solution, which means that the estimates may lie outside of the parameter space. Although there are some works on VCE in the Gaussian error model with equality or inequality constraints to mitigate this effect, to the best of our knowledge, there does not exist any work addressing the interior solutions of variance components for the heavy-tailed error model. In this article, we consider these issues for the first time and describe the behavior of multiple data sets using the joint functional model, which allows for the nonlinear modeling through nonlinear (differentiable) observation functions, where the random errors are modeled as Student’s t-distributed. To address the estimation problem, an iteratively reweighted least squares (LS) approach to self-tuning robust estimation of joint functional model parameters, the variance components, and the degree of freedom (df) of the Student’s t-distribution is derived based on a variational generalized expectation-maximization (GEM) algorithm. The proposed algorithm is computationally cheap and easy to implement. The performance of the algorithm is evaluated by means of Monte Carlo simulations of the joint volcano source model. Furthermore, the suitability of the research model and the proposed variational GEM algorithm is investigated within a numerical experiment involving the multisource modeling and adjustment of real data sets of the 2015 Calbuco volcano eruption.
    publisherASCE
    titleA Variational Bayesian Approach to Self-Tuning Robust Adjustment for Joint Inversion of Nonlinear Volcano Source Model with t-Distributed Random Errors
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000391
    journal fristpage04021032
    journal lastpage04021032-19
    page19
    treeJournal of Surveying Engineering:;2021:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian