YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Robustness Assessment Framework for Through Tied-Arch Bridge Considering Tie-Bar Failure

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 005::page 04022028
    Author:
    Bing-hui Fan
    ,
    Su-guo Wang
    ,
    Bao-chun Chen
    DOI: 10.1061/(ASCE)BE.1943-5592.0001861
    Publisher: ASCE
    Abstract: Compared with those of other bridge types, the structural system of through tied-arch bridges is particularly susceptible to failure owing to the deterioration and fracturing of tie-bars as well as a lack of structural robustness, which are the main internal and external causes of progressive collapse accidents, respectively. In particular, low structural robustness strongly influences the severity of accidents induced by tie-bar breakage. To objectively reflect the possible failure mode induced by tie-bar failure and to provide improved structural robustness in through tied-arch bridges, within which the suspended deck system is relatively independent, a robustness assessment framework considering tie-bar failure is proposed in this study, by considering the design and maintenance essentials. First, the main analysis parameters for the extreme-event limit state considering tie-bar failure are put forward, including the critical tie-bar failure rate, partial factor for load effects, transverse reduction factor of multilane loading, dynamic magnification factor of material strength, and reduction factors of residual strength. Second, the quantitative assessment index of structural robustness IT,rob is proposed based on the safety redundancy of the remaining structural members, and robustness assessment rules are put forward in accordance with the different calculation results of IT,rob and horizontal displacement. A typical rigid-framed through tied-arch bridges is assessed using the proposed framework. The assessment results reveal that multiple fortifications against extreme events of tie-bar failure can be established by designing the tie-bars and the piers with sufficient safety features to form the first and final line of defense against the tie-bar breakage effect. Moreover, proper maintenance should be conducted to guarantee the structural robustness of bridges in use. The methodology is well suited for the design of new through tied-arch bridges and to access the robustness of existing bridges to ensure the safety of transportation services.
    • Download: (1.926Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Robustness Assessment Framework for Through Tied-Arch Bridge Considering Tie-Bar Failure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282483
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorBing-hui Fan
    contributor authorSu-guo Wang
    contributor authorBao-chun Chen
    date accessioned2022-05-07T20:28:41Z
    date available2022-05-07T20:28:41Z
    date issued2022-5-1
    identifier other(ASCE)BE.1943-5592.0001861.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282483
    description abstractCompared with those of other bridge types, the structural system of through tied-arch bridges is particularly susceptible to failure owing to the deterioration and fracturing of tie-bars as well as a lack of structural robustness, which are the main internal and external causes of progressive collapse accidents, respectively. In particular, low structural robustness strongly influences the severity of accidents induced by tie-bar breakage. To objectively reflect the possible failure mode induced by tie-bar failure and to provide improved structural robustness in through tied-arch bridges, within which the suspended deck system is relatively independent, a robustness assessment framework considering tie-bar failure is proposed in this study, by considering the design and maintenance essentials. First, the main analysis parameters for the extreme-event limit state considering tie-bar failure are put forward, including the critical tie-bar failure rate, partial factor for load effects, transverse reduction factor of multilane loading, dynamic magnification factor of material strength, and reduction factors of residual strength. Second, the quantitative assessment index of structural robustness IT,rob is proposed based on the safety redundancy of the remaining structural members, and robustness assessment rules are put forward in accordance with the different calculation results of IT,rob and horizontal displacement. A typical rigid-framed through tied-arch bridges is assessed using the proposed framework. The assessment results reveal that multiple fortifications against extreme events of tie-bar failure can be established by designing the tie-bars and the piers with sufficient safety features to form the first and final line of defense against the tie-bar breakage effect. Moreover, proper maintenance should be conducted to guarantee the structural robustness of bridges in use. The methodology is well suited for the design of new through tied-arch bridges and to access the robustness of existing bridges to ensure the safety of transportation services.
    publisherASCE
    titleRobustness Assessment Framework for Through Tied-Arch Bridge Considering Tie-Bar Failure
    typeJournal Paper
    journal volume27
    journal issue5
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001861
    journal fristpage04022028
    journal lastpage04022028-15
    page15
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian