YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Weld Sequence on the Low-Cycle Fatigue Failure of WUF-B Connections

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 007::page 04022072
    Author:
    Tasnim Hassan
    ,
    Shahriar Quayyum
    DOI: 10.1061/(ASCE)ST.1943-541X.0003350
    Publisher: ASCE
    Abstract: Experiments on post-Northridge welded unreinforced flange bolted web (WUF-B) connections demonstrated a new low-cycle fatigue (LCF) crack initiation mechanism with final rupture occurring either near the weld access hole or the weld regions. Post-Northridge connection research reports and related commentary indicated that the weld and heat-affected zone (HAZ) conditions might be contributing factors in LCF-initiated failures of the modified WUF-B connections. The experimental study reported herein investigated the influence of weld sequence on the fatigue failure of the WUF-B connections. Two exterior WUF-B connections were fabricated using different weld sequences in laying the complete joint penetration welding between the beam and column flanges. These connections were tested under a constant-amplitude displacement-controlled loading protocol until crack initiation. Both specimens failed by cracking at the weld access hole, one in a brittle manner and the other in a ductile manner. Analysis of the recorded data demonstrated the influence of weld sequence on strain responses at the weld toe and weld access hole regions. Accumulation of strain with cycles, which is a phenomenon known as strain ratcheting, was observed near these locations in both tests. Recorded strain responses near the crack locations indicated the cause of earlier failure of one specimen compared with the other. Finally, future research needs in mitigating the influence of welding sequence on fatigue failure of welded steel moment connections are discussed.
    • Download: (3.313Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Weld Sequence on the Low-Cycle Fatigue Failure of WUF-B Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282482
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorTasnim Hassan
    contributor authorShahriar Quayyum
    date accessioned2022-05-07T20:28:36Z
    date available2022-05-07T20:28:36Z
    date issued2022-04-19
    identifier other(ASCE)ST.1943-541X.0003350.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282482
    description abstractExperiments on post-Northridge welded unreinforced flange bolted web (WUF-B) connections demonstrated a new low-cycle fatigue (LCF) crack initiation mechanism with final rupture occurring either near the weld access hole or the weld regions. Post-Northridge connection research reports and related commentary indicated that the weld and heat-affected zone (HAZ) conditions might be contributing factors in LCF-initiated failures of the modified WUF-B connections. The experimental study reported herein investigated the influence of weld sequence on the fatigue failure of the WUF-B connections. Two exterior WUF-B connections were fabricated using different weld sequences in laying the complete joint penetration welding between the beam and column flanges. These connections were tested under a constant-amplitude displacement-controlled loading protocol until crack initiation. Both specimens failed by cracking at the weld access hole, one in a brittle manner and the other in a ductile manner. Analysis of the recorded data demonstrated the influence of weld sequence on strain responses at the weld toe and weld access hole regions. Accumulation of strain with cycles, which is a phenomenon known as strain ratcheting, was observed near these locations in both tests. Recorded strain responses near the crack locations indicated the cause of earlier failure of one specimen compared with the other. Finally, future research needs in mitigating the influence of welding sequence on fatigue failure of welded steel moment connections are discussed.
    publisherASCE
    titleInfluence of Weld Sequence on the Low-Cycle Fatigue Failure of WUF-B Connections
    typeJournal Paper
    journal volume148
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003350
    journal fristpage04022072
    journal lastpage04022072-14
    page14
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian