YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Gaussian and Nongaussian Characteristics of Nonstationary Seismic Ground Motions

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 006::page 04022070
    Author:
    X. Z. Cui
    ,
    H. P. Hong
    DOI: 10.1061/(ASCE)ST.1943-541X.0003340
    Publisher: ASCE
    Abstract: In earthquake engineering, seismic ground motions are most often modelled as a nonstationary Gaussian process. A few studies indicated that seismic ground motions should be treated as a nonstationary non-Gaussian process, by showing that the kurtosis coefficient of the historical ground motion records is much greater than three. These findings and conclusions are queried in the present study, which analyzes a large number of historical ground motion records. Our results indicate that while the mixture marginal distribution of the acceleration of the records is non-Gaussian with a heavy distribution tail, the mixture marginal distribution of the standardized record, defined by the time-varying record to its standard deviation, is only mildly non-Gaussian. We point out that the mixture marginal distribution of a nonstationary Gaussian process may not be Gaussian. The implication of these observations in simulating records is explained. The sampled nonstationary Gaussian/non-Gaussian records are used to compare the responses of single-degree-of-freedom systems. The results indicate that the error introduced by adopting the Gaussian assumption is small, suggesting that the ground motions could be assumed to be a nonstationary Gaussian process with sufficient accuracy, especially if structures that are not very stiff are considered.
    • Download: (4.074Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Gaussian and Nongaussian Characteristics of Nonstationary Seismic Ground Motions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282477
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorX. Z. Cui
    contributor authorH. P. Hong
    date accessioned2022-05-07T20:28:27Z
    date available2022-05-07T20:28:27Z
    date issued2022-04-13
    identifier other(ASCE)ST.1943-541X.0003340.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282477
    description abstractIn earthquake engineering, seismic ground motions are most often modelled as a nonstationary Gaussian process. A few studies indicated that seismic ground motions should be treated as a nonstationary non-Gaussian process, by showing that the kurtosis coefficient of the historical ground motion records is much greater than three. These findings and conclusions are queried in the present study, which analyzes a large number of historical ground motion records. Our results indicate that while the mixture marginal distribution of the acceleration of the records is non-Gaussian with a heavy distribution tail, the mixture marginal distribution of the standardized record, defined by the time-varying record to its standard deviation, is only mildly non-Gaussian. We point out that the mixture marginal distribution of a nonstationary Gaussian process may not be Gaussian. The implication of these observations in simulating records is explained. The sampled nonstationary Gaussian/non-Gaussian records are used to compare the responses of single-degree-of-freedom systems. The results indicate that the error introduced by adopting the Gaussian assumption is small, suggesting that the ground motions could be assumed to be a nonstationary Gaussian process with sufficient accuracy, especially if structures that are not very stiff are considered.
    publisherASCE
    titleOn the Gaussian and Nongaussian Characteristics of Nonstationary Seismic Ground Motions
    typeJournal Paper
    journal volume148
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003340
    journal fristpage04022070
    journal lastpage04022070-11
    page11
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian