YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Galloping Stability Criterion for a 3-DOF System Considering Aerodynamic Stiffness and Inertial Coupling

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 006::page 04022048
    Author:
    Zuopeng Wen
    ,
    Haiwei Xu
    ,
    Wenjuan Lou
    DOI: 10.1061/(ASCE)ST.1943-541X.0003328
    Publisher: ASCE
    Abstract: Inertial coupling and aerodynamic stiffness play important roles in the prediction of galloping stability but have rarely been considered in previous studies. By considering both factors together, a galloping stability criterion framework for a three-degree-of-freedom (3-DOF) system with various translational and torsional frequency combinations was established based on quasi-steady theory. For a system with discrete frequencies, analytical solutions of eigenvalue real parts were derived using a step-by-step perturbation method. A perturbation method based on repeated eigenvalues was used to solve a system with two close translational frequencies and the corresponding analytical solution. When a system had tuned 3-DOF frequencies, an alternative galloping stability criterion considering the influence of aerodynamic stiffness was proposed to estimate galloping under high wind speed. Wind tunnel test results and numerical simulations of a six-bundle conductor with D-shaped icing were employed to verify the validity of the proposed galloping stability criterion framework. Comparisons of the proposed criterion with other existent galloping theories showed that both aerodynamic stiffness and inertial coupling have significant effects on the initiation of galloping. The contribution of inertial coupling becomes significant under high wind speeds where a higher aerodynamic stiffness emerges. Applying an eccentric mass can improve the galloping stability of a system by producing gravity stiffness and inertial coupling. This finding may provide practical guidance for antigalloping design.
    • Download: (913.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Galloping Stability Criterion for a 3-DOF System Considering Aerodynamic Stiffness and Inertial Coupling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282465
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorZuopeng Wen
    contributor authorHaiwei Xu
    contributor authorWenjuan Lou
    date accessioned2022-05-07T20:27:49Z
    date available2022-05-07T20:27:49Z
    date issued2022-03-17
    identifier other(ASCE)ST.1943-541X.0003328.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282465
    description abstractInertial coupling and aerodynamic stiffness play important roles in the prediction of galloping stability but have rarely been considered in previous studies. By considering both factors together, a galloping stability criterion framework for a three-degree-of-freedom (3-DOF) system with various translational and torsional frequency combinations was established based on quasi-steady theory. For a system with discrete frequencies, analytical solutions of eigenvalue real parts were derived using a step-by-step perturbation method. A perturbation method based on repeated eigenvalues was used to solve a system with two close translational frequencies and the corresponding analytical solution. When a system had tuned 3-DOF frequencies, an alternative galloping stability criterion considering the influence of aerodynamic stiffness was proposed to estimate galloping under high wind speed. Wind tunnel test results and numerical simulations of a six-bundle conductor with D-shaped icing were employed to verify the validity of the proposed galloping stability criterion framework. Comparisons of the proposed criterion with other existent galloping theories showed that both aerodynamic stiffness and inertial coupling have significant effects on the initiation of galloping. The contribution of inertial coupling becomes significant under high wind speeds where a higher aerodynamic stiffness emerges. Applying an eccentric mass can improve the galloping stability of a system by producing gravity stiffness and inertial coupling. This finding may provide practical guidance for antigalloping design.
    publisherASCE
    titleGalloping Stability Criterion for a 3-DOF System Considering Aerodynamic Stiffness and Inertial Coupling
    typeJournal Paper
    journal volume148
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003328
    journal fristpage04022048
    journal lastpage04022048-11
    page11
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian