YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Topology Design Optimization of Fiber-Reinforced Composite Frames with Fundamental Frequency Constraints

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 004::page 04022027
    Author:
    Zunyi Duan
    ,
    Yuqi Liu
    ,
    Bin Xu
    ,
    Jun Yan
    DOI: 10.1061/(ASCE)ST.1943-541X.0003315
    Publisher: ASCE
    Abstract: Fiber-reinforced polymer (FRP) composite frames are the ideal main support structure in civil and aerospace engineering applications because of their excellent material and structural properties for high stiffness ratio, high strength ratio, large span, and so forth. This paper investigated strong singularity optimum problems of FRP composite frames under fundamental frequency constraints. An area/moment of inertia-density strategy, the adapted polynomial material interpolation (APLMP) strategy, was adopted. The APLMP strategy changes the physical relationship of a tube’s bending stiffness and cross-sectional area to relax the local vibration frequency constraint. The specific manufacturing constraints for laminated composite were considered in the mathematical model with fixed fiber winding angles and sequence according to certain guidelines to reduce the heavy calculation burden. The artificial densities of the APLMP strategy, which are a function of the areas of the composite frame, were defined as the size and topology optimization variables. Extensive large-scale two-dimensional and three-dimensional numerical examples demonstrated the validity of the APLMP interpolation strategy for topology design optimization of FRP frames. It was proved that the APLMP strategy can solve the challenge of the strongly singular optimum for structure topology design optimization of composite frames with frequency constraints.
    • Download: (3.492Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Topology Design Optimization of Fiber-Reinforced Composite Frames with Fundamental Frequency Constraints

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282452
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorZunyi Duan
    contributor authorYuqi Liu
    contributor authorBin Xu
    contributor authorJun Yan
    date accessioned2022-05-07T20:27:11Z
    date available2022-05-07T20:27:11Z
    date issued2022-02-11
    identifier other(ASCE)ST.1943-541X.0003315.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282452
    description abstractFiber-reinforced polymer (FRP) composite frames are the ideal main support structure in civil and aerospace engineering applications because of their excellent material and structural properties for high stiffness ratio, high strength ratio, large span, and so forth. This paper investigated strong singularity optimum problems of FRP composite frames under fundamental frequency constraints. An area/moment of inertia-density strategy, the adapted polynomial material interpolation (APLMP) strategy, was adopted. The APLMP strategy changes the physical relationship of a tube’s bending stiffness and cross-sectional area to relax the local vibration frequency constraint. The specific manufacturing constraints for laminated composite were considered in the mathematical model with fixed fiber winding angles and sequence according to certain guidelines to reduce the heavy calculation burden. The artificial densities of the APLMP strategy, which are a function of the areas of the composite frame, were defined as the size and topology optimization variables. Extensive large-scale two-dimensional and three-dimensional numerical examples demonstrated the validity of the APLMP interpolation strategy for topology design optimization of FRP frames. It was proved that the APLMP strategy can solve the challenge of the strongly singular optimum for structure topology design optimization of composite frames with frequency constraints.
    publisherASCE
    titleStructural Topology Design Optimization of Fiber-Reinforced Composite Frames with Fundamental Frequency Constraints
    typeJournal Paper
    journal volume148
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003315
    journal fristpage04022027
    journal lastpage04022027-15
    page15
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian