YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Performance of Circular Ultrahigh-Performance Concrete–Filled Double Skin High-Strength Steel Tubular Stub Columns under Axial Compression

    Source: Journal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 003::page 04021298
    Author:
    Bo Yang
    ,
    Le Shen
    ,
    Kang Chen
    ,
    Chen Feng
    ,
    Xuchuan Lin
    ,
    Mohamed Elchalakani
    ,
    Shaoqian Xu
    DOI: 10.1061/(ASCE)ST.1943-541X.0003291
    Publisher: ASCE
    Abstract: This paper proposed a new type of stiffened circular ultra-high performance concrete-filled double skin steel tubular (UHPCFDST) column, in which stiffeners were applied to connect both inner and outer steel tubes. It efficiently delayed the local buckling of steel tubes and enhanced the integral of the section. This new type of UHPCFDST can be named multicells ultra-high performance concrete-filled double skin steel tubular (MUHPCFDST) column since the stiffener divided the sandwich space between the two steel tubes into multicells. Both the UHPCFDST and MUHPCFDST stub columns were fabricated and tested under centrally compression loading to investigate the axial mechanical behavior. The parameters considered in this study included specimen size, diameter-to-thickness ratio, the quantity of stiffener, and hollow ratio. Based on the tests, specimens’ column failure mode, axial load-shortening curves, local buckling behavior, compounding strength, strength index, and ductility coefficient were obtained and discussed. Then, the authors proposed a uniaxial stress-strain function of ultra-high performance concrete under compression and established three-dimension finite-element (FE) models with this stress-strain model to simulate the axial behavior of UHPCFDST and MUHPCFDST columns. Compared with the experimental results, the average deviation of the FE analysis in predicting the column bearing capacity and corresponding axial shortening was −3% and −5.5%, respectively. Finally, parametric studies were carried out, and a calculation method was proposed. The parametric analysis results and predictions from different methods (including the proposed method and methods suggested by existing design codes) were compared. The proposed method and calculating methods provided in AIJ-2008, EC4, and AS/NZS 2327 can reasonably predict the ultimate bearing capacity of both circular UHPCFDST and circular MUHPCFDST columns.
    • Download: (2.808Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Performance of Circular Ultrahigh-Performance Concrete–Filled Double Skin High-Strength Steel Tubular Stub Columns under Axial Compression

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282426
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorBo Yang
    contributor authorLe Shen
    contributor authorKang Chen
    contributor authorChen Feng
    contributor authorXuchuan Lin
    contributor authorMohamed Elchalakani
    contributor authorShaoqian Xu
    date accessioned2022-05-07T20:26:20Z
    date available2022-05-07T20:26:20Z
    date issued2021-12-28
    identifier other(ASCE)ST.1943-541X.0003291.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282426
    description abstractThis paper proposed a new type of stiffened circular ultra-high performance concrete-filled double skin steel tubular (UHPCFDST) column, in which stiffeners were applied to connect both inner and outer steel tubes. It efficiently delayed the local buckling of steel tubes and enhanced the integral of the section. This new type of UHPCFDST can be named multicells ultra-high performance concrete-filled double skin steel tubular (MUHPCFDST) column since the stiffener divided the sandwich space between the two steel tubes into multicells. Both the UHPCFDST and MUHPCFDST stub columns were fabricated and tested under centrally compression loading to investigate the axial mechanical behavior. The parameters considered in this study included specimen size, diameter-to-thickness ratio, the quantity of stiffener, and hollow ratio. Based on the tests, specimens’ column failure mode, axial load-shortening curves, local buckling behavior, compounding strength, strength index, and ductility coefficient were obtained and discussed. Then, the authors proposed a uniaxial stress-strain function of ultra-high performance concrete under compression and established three-dimension finite-element (FE) models with this stress-strain model to simulate the axial behavior of UHPCFDST and MUHPCFDST columns. Compared with the experimental results, the average deviation of the FE analysis in predicting the column bearing capacity and corresponding axial shortening was −3% and −5.5%, respectively. Finally, parametric studies were carried out, and a calculation method was proposed. The parametric analysis results and predictions from different methods (including the proposed method and methods suggested by existing design codes) were compared. The proposed method and calculating methods provided in AIJ-2008, EC4, and AS/NZS 2327 can reasonably predict the ultimate bearing capacity of both circular UHPCFDST and circular MUHPCFDST columns.
    publisherASCE
    titleMechanical Performance of Circular Ultrahigh-Performance Concrete–Filled Double Skin High-Strength Steel Tubular Stub Columns under Axial Compression
    typeJournal Paper
    journal volume148
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003291
    journal fristpage04021298
    journal lastpage04021298-24
    page24
    treeJournal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian