YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Response Prediction of RC Structural Components Subjected to Combined Blast and Fragment Impact

    Source: Journal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 002::page 04021264
    Author:
    Abhiroop Goswami
    ,
    Thiagarajan Ganesh
    ,
    Satadru Das Adhikary
    DOI: 10.1061/(ASCE)ST.1943-541X.0003242
    Publisher: ASCE
    Abstract: The paper presents a methodology for enumerating the dynamic response of one-way reinforced concrete (RC) structural elements subjected to combined blast and fragment loading, a scenario commonly associated with the detonation of cased explosive charges. The proposed methodology is motivated by the relatively few studies published in this area and the simplified design procedures that are currently used for addressing this problem. The formulated framework, in addition to the consideration of the blast and the fragment loading, also accounts for the damage incurred by the member due to the localized penetration caused by the impacting fragments. The fragment-induced damage is accounted for by considering a member having a reduced cross-sectional depth, i.e., a damaged member. Material nonlinearity and the strain rate–sensitive aspects of both concrete and steel are also considered. The dynamic structural response of the member was quantified by idealizing the member as an equivalent single-degree-of-freedom system. Finite-element (FE) simulations were conducted by the authors for assessing the efficacy of the adopted formulations. On the basis of the comparative assessment, the results of the FE simulations were found to match relatively well with the results of the proposed approach (relative difference being in the range of 8.95%–12.67%). Additionally, the peak displacements for the cased explosive charges were noted to increase by approximately 31%–123% compared to bare (uncased) explosive charges of similar charge weights. While this observation underlines the severity of cased explosive charges, it also qualitatively highlights the damaging propensity of the striking fragments, a component that generally is not exclusively considered for design purposes.
    • Download: (1.054Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Response Prediction of RC Structural Components Subjected to Combined Blast and Fragment Impact

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282378
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAbhiroop Goswami
    contributor authorThiagarajan Ganesh
    contributor authorSatadru Das Adhikary
    date accessioned2022-05-07T20:24:02Z
    date available2022-05-07T20:24:02Z
    date issued2021-11-23
    identifier other(ASCE)ST.1943-541X.0003242.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282378
    description abstractThe paper presents a methodology for enumerating the dynamic response of one-way reinforced concrete (RC) structural elements subjected to combined blast and fragment loading, a scenario commonly associated with the detonation of cased explosive charges. The proposed methodology is motivated by the relatively few studies published in this area and the simplified design procedures that are currently used for addressing this problem. The formulated framework, in addition to the consideration of the blast and the fragment loading, also accounts for the damage incurred by the member due to the localized penetration caused by the impacting fragments. The fragment-induced damage is accounted for by considering a member having a reduced cross-sectional depth, i.e., a damaged member. Material nonlinearity and the strain rate–sensitive aspects of both concrete and steel are also considered. The dynamic structural response of the member was quantified by idealizing the member as an equivalent single-degree-of-freedom system. Finite-element (FE) simulations were conducted by the authors for assessing the efficacy of the adopted formulations. On the basis of the comparative assessment, the results of the FE simulations were found to match relatively well with the results of the proposed approach (relative difference being in the range of 8.95%–12.67%). Additionally, the peak displacements for the cased explosive charges were noted to increase by approximately 31%–123% compared to bare (uncased) explosive charges of similar charge weights. While this observation underlines the severity of cased explosive charges, it also qualitatively highlights the damaging propensity of the striking fragments, a component that generally is not exclusively considered for design purposes.
    publisherASCE
    titleDynamic Response Prediction of RC Structural Components Subjected to Combined Blast and Fragment Impact
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003242
    journal fristpage04021264
    journal lastpage04021264-13
    page13
    treeJournal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian