YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Progressive Collapse of Flat Plate Substructures Initiated by Upward and Downward Punching Shear Failures of Interior Slab–Column Joints

    Source: Journal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 002::page 04021262
    Author:
    Xuekang Guo
    ,
    Zhi Yang
    ,
    Yi Li
    ,
    Hong Guan
    ,
    Xinzheng Lu
    ,
    Mengzhu Diao
    DOI: 10.1061/(ASCE)ST.1943-541X.0003241
    Publisher: ASCE
    Abstract: A slab-column joint in a flat plate structure may exhibit upward or downward punching shear (UPS and DPS) failure when subjected to different abnormal loading conditions. This can cause distinct residual deformations of the slabs, which in turn influences the behavior of the consequent progressive collapse of the entire structure. This paper presents two experimental tests on two 2×2-bay, 1/3-scaled flat plate substructure specimens. Both tests were conducted in two loading phases. In the first loading phase (LP-1), the interior column of specimens UPS-Sub and DPS-Sub was subjected to a gradually increased upward and downward concentrated load, respectively, until punching failure occurred at the interior slab–column joint. In the second loading phase (LP-2), an incremented downward uniformly distributed load was applied on the slab of both specimens up until the ultimate state just before a complete collapse of the slab. After LP-1, local and global damage patterns were observed respectively from UPS-Sub and DPS-Sub. The punching shear strength and the corresponding displacement of the interior joint in UPS-Sub were found to be 58.2% higher and 53.6% lower, respectively, than the corresponding ones in DPS-Sub. In LP-2, due to the upward residual deformation of the slab in UPS-Sub as a result of LP-1, its first peak load, vertical displacement, and horizontal displacement under compressive membrane action were, respectively, 8.4%, 91.1%, and 57.1% larger than those in DPS-Sub. On the other hand, the postpunching peak load of the two specimens under tensile membrane action were identical. To offer an in-depth understanding of the mechanical behavior that resulted from upward or download punching shear failure, the punching shear strengths of the interior slab–column joints and collapse resistance of the substructures were also analytically investigated.
    • Download: (1.838Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Progressive Collapse of Flat Plate Substructures Initiated by Upward and Downward Punching Shear Failures of Interior Slab–Column Joints

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282377
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorXuekang Guo
    contributor authorZhi Yang
    contributor authorYi Li
    contributor authorHong Guan
    contributor authorXinzheng Lu
    contributor authorMengzhu Diao
    date accessioned2022-05-07T20:24:01Z
    date available2022-05-07T20:24:01Z
    date issued2021-11-22
    identifier other(ASCE)ST.1943-541X.0003241.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282377
    description abstractA slab-column joint in a flat plate structure may exhibit upward or downward punching shear (UPS and DPS) failure when subjected to different abnormal loading conditions. This can cause distinct residual deformations of the slabs, which in turn influences the behavior of the consequent progressive collapse of the entire structure. This paper presents two experimental tests on two 2×2-bay, 1/3-scaled flat plate substructure specimens. Both tests were conducted in two loading phases. In the first loading phase (LP-1), the interior column of specimens UPS-Sub and DPS-Sub was subjected to a gradually increased upward and downward concentrated load, respectively, until punching failure occurred at the interior slab–column joint. In the second loading phase (LP-2), an incremented downward uniformly distributed load was applied on the slab of both specimens up until the ultimate state just before a complete collapse of the slab. After LP-1, local and global damage patterns were observed respectively from UPS-Sub and DPS-Sub. The punching shear strength and the corresponding displacement of the interior joint in UPS-Sub were found to be 58.2% higher and 53.6% lower, respectively, than the corresponding ones in DPS-Sub. In LP-2, due to the upward residual deformation of the slab in UPS-Sub as a result of LP-1, its first peak load, vertical displacement, and horizontal displacement under compressive membrane action were, respectively, 8.4%, 91.1%, and 57.1% larger than those in DPS-Sub. On the other hand, the postpunching peak load of the two specimens under tensile membrane action were identical. To offer an in-depth understanding of the mechanical behavior that resulted from upward or download punching shear failure, the punching shear strengths of the interior slab–column joints and collapse resistance of the substructures were also analytically investigated.
    publisherASCE
    titleProgressive Collapse of Flat Plate Substructures Initiated by Upward and Downward Punching Shear Failures of Interior Slab–Column Joints
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003241
    journal fristpage04021262
    journal lastpage04021262-14
    page14
    treeJournal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian