YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Residual Stress and Global Deflection Limits for Future Hot-Rolled Steel Asymmetric I-Beams

    Source: Journal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 001::page 04021232
    Author:
    Eric Stoddard
    ,
    Matthew Yarnold
    DOI: 10.1061/(ASCE)ST.1943-541X.0003204
    Publisher: ASCE
    Abstract: Medium-span to long-span floor systems in residential and commercial construction have commonly used steel–concrete composite construction. These composite floor systems have become more structurally efficient with the use of built-up asymmetric steel beam sections. Although structural efficiency is important, a fast and cost-effective solution is paramount. The research presented herein is being conducted for the AISC on hot-rolled asymmetric I-beams (A-shapes) for potential future addition to the AISC Steel Construction Manual. The aim is to adequately proportion these hot-rolled shapes so they match or improve built-up asymmetric beam structural efficiency while increasing the speed and economy of steel–concrete composite floor systems. The initial focus has been placed on steel behavior as a result of the manufacturing process, where residual stresses and deformations can be an issue due to uneven cooling. A better understanding of residual stresses is critical for accurate calculation of the lateral torsional buckling strength during deck casting and placement. In addition, steel mills have expressed concern regarding global deformation of an asymmetric I-shape. As a result, an extensive thermomechanical finite-element modeling approach, using nonlinear thermomechanical properties of steel, was devised to simulate the cooling process of hot-rolled steel shapes. A single model requires up to 50 h of processing time using the Texas A&M high-performance computing center. The modeling procedure was validated against accepted residual stress experimental test measurements. Proof-of-concept (POC) A-shape beams were also produced by Nucor. The POC beam cooling profiles were used as further validation. Then, a parametric study was executed that individually altered the top flange width and thickness of two different-depth W-shapes. The parametric study identified a maximum flange width-to-thickness ratio to satisfy a reasonable residual compressive stress limit. The study also found that, despite concerns, global deformations are not an issue for realistic proportions of future hot-rolled asymmetric I-beams.
    • Download: (3.556Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Residual Stress and Global Deflection Limits for Future Hot-Rolled Steel Asymmetric I-Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282341
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorEric Stoddard
    contributor authorMatthew Yarnold
    date accessioned2022-05-07T20:22:33Z
    date available2022-05-07T20:22:33Z
    date issued2021-10-21
    identifier other(ASCE)ST.1943-541X.0003204.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282341
    description abstractMedium-span to long-span floor systems in residential and commercial construction have commonly used steel–concrete composite construction. These composite floor systems have become more structurally efficient with the use of built-up asymmetric steel beam sections. Although structural efficiency is important, a fast and cost-effective solution is paramount. The research presented herein is being conducted for the AISC on hot-rolled asymmetric I-beams (A-shapes) for potential future addition to the AISC Steel Construction Manual. The aim is to adequately proportion these hot-rolled shapes so they match or improve built-up asymmetric beam structural efficiency while increasing the speed and economy of steel–concrete composite floor systems. The initial focus has been placed on steel behavior as a result of the manufacturing process, where residual stresses and deformations can be an issue due to uneven cooling. A better understanding of residual stresses is critical for accurate calculation of the lateral torsional buckling strength during deck casting and placement. In addition, steel mills have expressed concern regarding global deformation of an asymmetric I-shape. As a result, an extensive thermomechanical finite-element modeling approach, using nonlinear thermomechanical properties of steel, was devised to simulate the cooling process of hot-rolled steel shapes. A single model requires up to 50 h of processing time using the Texas A&M high-performance computing center. The modeling procedure was validated against accepted residual stress experimental test measurements. Proof-of-concept (POC) A-shape beams were also produced by Nucor. The POC beam cooling profiles were used as further validation. Then, a parametric study was executed that individually altered the top flange width and thickness of two different-depth W-shapes. The parametric study identified a maximum flange width-to-thickness ratio to satisfy a reasonable residual compressive stress limit. The study also found that, despite concerns, global deformations are not an issue for realistic proportions of future hot-rolled asymmetric I-beams.
    publisherASCE
    titleResidual Stress and Global Deflection Limits for Future Hot-Rolled Steel Asymmetric I-Beams
    typeJournal Paper
    journal volume148
    journal issue1
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003204
    journal fristpage04021232
    journal lastpage04021232-12
    page12
    treeJournal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian