YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Block Shear Strength of Coped Beam Connections with Double Bolt Lines

    Source: Journal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 001::page 04021222
    Author:
    Huajie Wen
    ,
    Hussam Mahmoud
    DOI: 10.1061/(ASCE)ST.1943-541X.0003155
    Publisher: ASCE
    Abstract: Coped beam connections are commonly used in the construction of steel structures. Existing block shear provisions for these connections, with multiple bolt lines, account for the presence of uneven stress distribution only on the tension planes. This is inconsistent with the approach used to evaluate the strength of connections with only one bolt line, in which there is no consideration for the uneven stress distribution in the design equation. In this study, numerical finite-element models are developed, validated, and then used to evaluate the appropriateness of existing code provisions for predicting the strength of coped connections with two bolt lines. The numerical models can capture the full behavior of the connections up to and including complete fracture. The results show that the finite rotational stiffness of the connecting components is the primary cause of irregularity in the stress distribution, causing reduction in connection capacity. The results also show that the most significant shear lag occurs along the shear planes instead of the tension planes, which challenges the philosophy employed in major standards. The results demonstrate the inability of existing code equations to physically capture the behavior of the connection, which can inevitably lead to inconsistent predictions. The results are also used to propose a new design equation for predicting block shear strength in coped beam connections with multiple bolt lines. Additionally, a reliability analysis is conducted to determine the resistance factors of the proposed equations with consistent safety levels.
    • Download: (3.000Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Block Shear Strength of Coped Beam Connections with Double Bolt Lines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282324
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorHuajie Wen
    contributor authorHussam Mahmoud
    date accessioned2022-05-07T20:21:43Z
    date available2022-05-07T20:21:43Z
    date issued2021-10-18
    identifier other(ASCE)ST.1943-541X.0003155.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282324
    description abstractCoped beam connections are commonly used in the construction of steel structures. Existing block shear provisions for these connections, with multiple bolt lines, account for the presence of uneven stress distribution only on the tension planes. This is inconsistent with the approach used to evaluate the strength of connections with only one bolt line, in which there is no consideration for the uneven stress distribution in the design equation. In this study, numerical finite-element models are developed, validated, and then used to evaluate the appropriateness of existing code provisions for predicting the strength of coped connections with two bolt lines. The numerical models can capture the full behavior of the connections up to and including complete fracture. The results show that the finite rotational stiffness of the connecting components is the primary cause of irregularity in the stress distribution, causing reduction in connection capacity. The results also show that the most significant shear lag occurs along the shear planes instead of the tension planes, which challenges the philosophy employed in major standards. The results demonstrate the inability of existing code equations to physically capture the behavior of the connection, which can inevitably lead to inconsistent predictions. The results are also used to propose a new design equation for predicting block shear strength in coped beam connections with multiple bolt lines. Additionally, a reliability analysis is conducted to determine the resistance factors of the proposed equations with consistent safety levels.
    publisherASCE
    titleBlock Shear Strength of Coped Beam Connections with Double Bolt Lines
    typeJournal Paper
    journal volume148
    journal issue1
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003155
    journal fristpage04021222
    journal lastpage04021222-13
    page13
    treeJournal of Structural Engineering:;2021:;Volume ( 148 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian