YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Characteristics of GGBFS/FA-Based Geopolymer Concrete and Its Environmental Impact

    Source: Practice Periodical on Structural Design and Construction:;2022:;Volume ( 027 ):;issue: 002::page 04022017
    Author:
    Alaa M. Morsy
    ,
    Ahmed M. Ragheb
    ,
    Ali H. Shalan
    ,
    Ola H. Mohamed
    DOI: 10.1061/(ASCE)SC.1943-5576.0000686
    Publisher: ASCE
    Abstract: Geopolymer concrete is considered to be one of the best alternatives to portland cement concrete, partially or totally, not only because it decreases the CO2 emissions released during ordinary portland cement (OPC) production, but also due to its acceptable mechanical and durability properties. This study presents the experimental results of using fly ash (FA) and ground granulated blast-furnace slag (GGBFS) on fresh and hardened geopolymer concrete properties, considering the effects of several parameters such as binder type and content, alkaline binder ratio, molarity, Si/OH ratio, cement ratio in the binder, water addition, and curing temperature. These parameters were studied over a wider range than in previous research using local by-product waste to determine the validity of the additives for massive production of geopolymer concrete. The studied properties were the slump, 7- and 28-day cube compressive strength, tensile strength, and modulus of elasticity. For all studied mixes, the increase of the binder content, sodium hydroxide concentration, and cement ratio of the binder enhanced the concrete properties, whereas the increase of the alkaline binder ratio, Si/OH ratio in the solution, and additional water decreased the concrete properties. An increase of curing temperature from 30°C to 90°C improved the fly ash–based geopolymer concrete mechanical properties by an average of 35%; in contrast, the same increase in temperature decreased the concrete mechanical properties of GGBFS-based geopolymer concrete by an average of 22%. Equations for tensile strength and modulus of elasticity in terms of compressive strength were proposed and were compared with equations from standards and equations previously proposed in the literature. Finally, the environmental impact in terms of CO2 emissions was found to be on average 90% less than that of conventional concrete of the same grade.
    • Download: (3.077Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Characteristics of GGBFS/FA-Based Geopolymer Concrete and Its Environmental Impact

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282304
    Collections
    • Journal of Structural Design and Construction Practice

    Show full item record

    contributor authorAlaa M. Morsy
    contributor authorAhmed M. Ragheb
    contributor authorAli H. Shalan
    contributor authorOla H. Mohamed
    date accessioned2022-05-07T20:20:42Z
    date available2022-05-07T20:20:42Z
    date issued2022-03-10
    identifier other(ASCE)SC.1943-5576.0000686.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282304
    description abstractGeopolymer concrete is considered to be one of the best alternatives to portland cement concrete, partially or totally, not only because it decreases the CO2 emissions released during ordinary portland cement (OPC) production, but also due to its acceptable mechanical and durability properties. This study presents the experimental results of using fly ash (FA) and ground granulated blast-furnace slag (GGBFS) on fresh and hardened geopolymer concrete properties, considering the effects of several parameters such as binder type and content, alkaline binder ratio, molarity, Si/OH ratio, cement ratio in the binder, water addition, and curing temperature. These parameters were studied over a wider range than in previous research using local by-product waste to determine the validity of the additives for massive production of geopolymer concrete. The studied properties were the slump, 7- and 28-day cube compressive strength, tensile strength, and modulus of elasticity. For all studied mixes, the increase of the binder content, sodium hydroxide concentration, and cement ratio of the binder enhanced the concrete properties, whereas the increase of the alkaline binder ratio, Si/OH ratio in the solution, and additional water decreased the concrete properties. An increase of curing temperature from 30°C to 90°C improved the fly ash–based geopolymer concrete mechanical properties by an average of 35%; in contrast, the same increase in temperature decreased the concrete mechanical properties of GGBFS-based geopolymer concrete by an average of 22%. Equations for tensile strength and modulus of elasticity in terms of compressive strength were proposed and were compared with equations from standards and equations previously proposed in the literature. Finally, the environmental impact in terms of CO2 emissions was found to be on average 90% less than that of conventional concrete of the same grade.
    publisherASCE
    titleMechanical Characteristics of GGBFS/FA-Based Geopolymer Concrete and Its Environmental Impact
    typeJournal Paper
    journal volume27
    journal issue2
    journal titlePractice Periodical on Structural Design and Construction
    identifier doi10.1061/(ASCE)SC.1943-5576.0000686
    journal fristpage04022017
    journal lastpage04022017-14
    page14
    treePractice Periodical on Structural Design and Construction:;2022:;Volume ( 027 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian