YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Consistent Software-Specific Nonlinear Dynamic Response of Highway Bridges

    Source: Practice Periodical on Structural Design and Construction:;2022:;Volume ( 027 ):;issue: 002::page 04022003
    Author:
    Andres F. Rodriguez
    ,
    Kevin R. Mackie
    ,
    Michael H. Scott
    DOI: 10.1061/(ASCE)SC.1943-5576.0000682
    Publisher: ASCE
    Abstract: Compared to linear analysis approaches, nonlinear analysis of bridge models under large seismic demands has enabled more realistic prediction of global and local responses. However, the sensitivity to modeling assumptions, element and material formulations, software-dependent implementations, and parameter selection may lead to variable results between nonlinear analysis software packages. While previous work has led to a better understanding of how to model nonlinear static response of bridge components and systems, seismic loads and the corresponding material hysteresis introduce additional sources of variability in the nonlinear response. Two ordinary standard bridges in California were analyzed using simplified steel and concrete constitutive models in concentrated plasticity elements for the columns and nonlinear gap-link springs for the abutments. The models were implemented in SAP2000 and OpenSees and calibrated to achieve common material, section, and element-level nonlinear static responses. Subsequently, the models were extended to seismic excitation with common unloading-reloading rules for the material models as well as common definitions for damping and mass. Analysis results showed consistent drift, base shear, and moment-curvature response histories between the software packages. However, the nonlinear seismic response sensitivity for alternative column hinge formulations and abutment models should be investigated in future studies.
    • Download: (2.206Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Consistent Software-Specific Nonlinear Dynamic Response of Highway Bridges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282301
    Collections
    • Journal of Structural Design and Construction Practice

    Show full item record

    contributor authorAndres F. Rodriguez
    contributor authorKevin R. Mackie
    contributor authorMichael H. Scott
    date accessioned2022-05-07T20:20:36Z
    date available2022-05-07T20:20:36Z
    date issued2022-01-28
    identifier other(ASCE)SC.1943-5576.0000682.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282301
    description abstractCompared to linear analysis approaches, nonlinear analysis of bridge models under large seismic demands has enabled more realistic prediction of global and local responses. However, the sensitivity to modeling assumptions, element and material formulations, software-dependent implementations, and parameter selection may lead to variable results between nonlinear analysis software packages. While previous work has led to a better understanding of how to model nonlinear static response of bridge components and systems, seismic loads and the corresponding material hysteresis introduce additional sources of variability in the nonlinear response. Two ordinary standard bridges in California were analyzed using simplified steel and concrete constitutive models in concentrated plasticity elements for the columns and nonlinear gap-link springs for the abutments. The models were implemented in SAP2000 and OpenSees and calibrated to achieve common material, section, and element-level nonlinear static responses. Subsequently, the models were extended to seismic excitation with common unloading-reloading rules for the material models as well as common definitions for damping and mass. Analysis results showed consistent drift, base shear, and moment-curvature response histories between the software packages. However, the nonlinear seismic response sensitivity for alternative column hinge formulations and abutment models should be investigated in future studies.
    publisherASCE
    titleConsistent Software-Specific Nonlinear Dynamic Response of Highway Bridges
    typeJournal Paper
    journal volume27
    journal issue2
    journal titlePractice Periodical on Structural Design and Construction
    identifier doi10.1061/(ASCE)SC.1943-5576.0000682
    journal fristpage04022003
    journal lastpage04022003-14
    page14
    treePractice Periodical on Structural Design and Construction:;2022:;Volume ( 027 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian