YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strengthening Square and Circular Low-Strength Concrete Columns with Fiber-Reinforced Cementitious Matrix: Experimental Investigation

    Source: Practice Periodical on Structural Design and Construction:;2022:;Volume ( 027 ):;issue: 002::page 04022005
    Author:
    Farid Abed
    ,
    Ahmed ElRefai
    ,
    Tamer El-Maaddawy
    ,
    Noor Tello
    ,
    Yazan Alhoubi
    DOI: 10.1061/(ASCE)SC.1943-5576.0000676
    Publisher: ASCE
    Abstract: This study investigated the efficiency of strengthening low-strength RC short columns with fiber-reinforced cementitious matrix (FRCM). Twelve columns were cast with concrete with a compressive strength of 18 MPa. All columns had a reinforcement ratio of 1.5%. The investigated parameters were the column cross section (square or circular), the spacing between the ties (90 and 180 mm) selected based on the columns’ dimensions, and the number of FRCM layers used in wrapping the columns [zero, two, and four layers of paraphenylene-ben-zobisoxazole (PBO) FRCM]. All columns had a clear height of 800 mm and were tested monotonically until failure. Results showed that for columns wrapped with two PBO-FRCM layers, using a tie spacing of 90 mm eliminated the effect of varying the cross section. However, circular columns showed a higher increase in capacity than square columns for a tie spacing of 180 mm, where the increase was 40%. For all columns wrapped with four PBO-FRCM layers, the cross-section shape was the sole influence on ultimate capacity, where circular columns noticeably showed a more improved capacity. Also, column load–strain relationships were only influenced by the tie spacing. All strengthened columns showed improved ductility with the increase in PBO-FRCM layers. Using existing design provisions, the theoretical capacity of the columns was calculated, and results showed that the code underestimates ultimate capacity, where the theoretical capacities were lower than the experimental ones by 5%–20%.
    • Download: (4.122Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strengthening Square and Circular Low-Strength Concrete Columns with Fiber-Reinforced Cementitious Matrix: Experimental Investigation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282296
    Collections
    • Journal of Structural Design and Construction Practice

    Show full item record

    contributor authorFarid Abed
    contributor authorAhmed ElRefai
    contributor authorTamer El-Maaddawy
    contributor authorNoor Tello
    contributor authorYazan Alhoubi
    date accessioned2022-05-07T20:20:18Z
    date available2022-05-07T20:20:18Z
    date issued2022-02-03
    identifier other(ASCE)SC.1943-5576.0000676.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282296
    description abstractThis study investigated the efficiency of strengthening low-strength RC short columns with fiber-reinforced cementitious matrix (FRCM). Twelve columns were cast with concrete with a compressive strength of 18 MPa. All columns had a reinforcement ratio of 1.5%. The investigated parameters were the column cross section (square or circular), the spacing between the ties (90 and 180 mm) selected based on the columns’ dimensions, and the number of FRCM layers used in wrapping the columns [zero, two, and four layers of paraphenylene-ben-zobisoxazole (PBO) FRCM]. All columns had a clear height of 800 mm and were tested monotonically until failure. Results showed that for columns wrapped with two PBO-FRCM layers, using a tie spacing of 90 mm eliminated the effect of varying the cross section. However, circular columns showed a higher increase in capacity than square columns for a tie spacing of 180 mm, where the increase was 40%. For all columns wrapped with four PBO-FRCM layers, the cross-section shape was the sole influence on ultimate capacity, where circular columns noticeably showed a more improved capacity. Also, column load–strain relationships were only influenced by the tie spacing. All strengthened columns showed improved ductility with the increase in PBO-FRCM layers. Using existing design provisions, the theoretical capacity of the columns was calculated, and results showed that the code underestimates ultimate capacity, where the theoretical capacities were lower than the experimental ones by 5%–20%.
    publisherASCE
    titleStrengthening Square and Circular Low-Strength Concrete Columns with Fiber-Reinforced Cementitious Matrix: Experimental Investigation
    typeJournal Paper
    journal volume27
    journal issue2
    journal titlePractice Periodical on Structural Design and Construction
    identifier doi10.1061/(ASCE)SC.1943-5576.0000676
    journal fristpage04022005
    journal lastpage04022005-11
    page11
    treePractice Periodical on Structural Design and Construction:;2022:;Volume ( 027 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian