YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparative Study of Conventional and FEM-Based Approach for Dynamic Analysis of Large Reciprocating Compressor Foundation Including Soil-Foundation Interaction

    Source: Practice Periodical on Structural Design and Construction:;2021:;Volume ( 027 ):;issue: 001::page 05021007
    Author:
    Kallol Biswas
    ,
    Prabir Kumar Paul
    ,
    Anindya Roy
    DOI: 10.1061/(ASCE)SC.1943-5576.0000657
    Publisher: ASCE
    Abstract: This paper aims to present a comparative study of dynamic response of a machine foundation supporting gas-lift reciprocating compressor using a conventional lumped parameter method and an FEM-based approach. Evaluation of dynamic response of machine foundation involves dynamic analysis of a rigid body supported on elastic half-space (soil mass). In general, conventional approaches involve idealization of the machine-foundation system as a rigid body and soil mass as a set of frequency independent (or dependent) elastic springs. However, for a foundation supporting large reciprocating machinery subjected to unusually high dynamic unbalanced loads acting at a significant height and foundation mat supporting several numbers of relatively flexible pedestals, due importance shall be attributed to the actual behavior of the machine-foundation system considering the soil-foundation interaction as well as the effect of boundary conditions. It is therefore necessary to substantiate the analysis result of conventional method with an alternative approach. As a part of the assessment of acceptability of lumped parameter output, i.e., natural frequencies and response amplitudes, a finite-element method–based approach was adopted. ANSYS (version 17) software was employed to create three-dimensional (3D) finite-element model where, apart from modeling the foundation-machine mass, soil layers were also modeled to include the kinematic and inertial interactions to simulate the real behavior of soil-foundation interaction as precisely as possible. Output results from both approaches were critically compared for all relevant parameters. This study indicates meaningful correlation among results obtained from both approaches in terms of amplitudes of vibration and natural frequencies of the foundation. For the governing coupled rocking-sliding mode, amplitude of vibration using conventional lumped parameter approach is obtained as 74.17 μm while the FEM approach results in an amplitude of 72.90 μm, indicating a difference of less than 2%. The frequency response curve, i.e., plot of variation of amplitude over a range of frequencies also reflects a significant amount of similarity in terms of maximum amplitude of response. The study also highlights the effect of soil improvement on the dynamic response.
    • Download: (7.804Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparative Study of Conventional and FEM-Based Approach for Dynamic Analysis of Large Reciprocating Compressor Foundation Including Soil-Foundation Interaction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282277
    Collections
    • Journal of Structural Design and Construction Practice

    Show full item record

    contributor authorKallol Biswas
    contributor authorPrabir Kumar Paul
    contributor authorAnindya Roy
    date accessioned2022-05-07T20:19:38Z
    date available2022-05-07T20:19:38Z
    date issued2021-11-08
    identifier other(ASCE)SC.1943-5576.0000657.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282277
    description abstractThis paper aims to present a comparative study of dynamic response of a machine foundation supporting gas-lift reciprocating compressor using a conventional lumped parameter method and an FEM-based approach. Evaluation of dynamic response of machine foundation involves dynamic analysis of a rigid body supported on elastic half-space (soil mass). In general, conventional approaches involve idealization of the machine-foundation system as a rigid body and soil mass as a set of frequency independent (or dependent) elastic springs. However, for a foundation supporting large reciprocating machinery subjected to unusually high dynamic unbalanced loads acting at a significant height and foundation mat supporting several numbers of relatively flexible pedestals, due importance shall be attributed to the actual behavior of the machine-foundation system considering the soil-foundation interaction as well as the effect of boundary conditions. It is therefore necessary to substantiate the analysis result of conventional method with an alternative approach. As a part of the assessment of acceptability of lumped parameter output, i.e., natural frequencies and response amplitudes, a finite-element method–based approach was adopted. ANSYS (version 17) software was employed to create three-dimensional (3D) finite-element model where, apart from modeling the foundation-machine mass, soil layers were also modeled to include the kinematic and inertial interactions to simulate the real behavior of soil-foundation interaction as precisely as possible. Output results from both approaches were critically compared for all relevant parameters. This study indicates meaningful correlation among results obtained from both approaches in terms of amplitudes of vibration and natural frequencies of the foundation. For the governing coupled rocking-sliding mode, amplitude of vibration using conventional lumped parameter approach is obtained as 74.17 μm while the FEM approach results in an amplitude of 72.90 μm, indicating a difference of less than 2%. The frequency response curve, i.e., plot of variation of amplitude over a range of frequencies also reflects a significant amount of similarity in terms of maximum amplitude of response. The study also highlights the effect of soil improvement on the dynamic response.
    publisherASCE
    titleA Comparative Study of Conventional and FEM-Based Approach for Dynamic Analysis of Large Reciprocating Compressor Foundation Including Soil-Foundation Interaction
    typeJournal Paper
    journal volume27
    journal issue1
    journal titlePractice Periodical on Structural Design and Construction
    identifier doi10.1061/(ASCE)SC.1943-5576.0000657
    journal fristpage05021007
    journal lastpage05021007-16
    page16
    treePractice Periodical on Structural Design and Construction:;2021:;Volume ( 027 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian