YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Flexibly Attached Secondary Systems on Dynamic Behavior of Light Structures

    Source: Practice Periodical on Structural Design and Construction:;2021:;Volume ( 027 ):;issue: 001::page 04021057
    Author:
    S. P. Challagulla
    ,
    C. Parimi
    ,
    Ehsan Noroozinejad Farsangi
    DOI: 10.1061/(ASCE)SC.1943-5576.0000634
    Publisher: ASCE
    Abstract: This paper investigates the effect of flexibly attached secondary systems (FSS) on the dynamic behavior of primary structures (PS) under harmonic and seismic ground excitations. An FSS affects the main structure during ground excitation differently than a secondary system that is rigidly attached to it. Small displacements in the FSS are used to derive the equations of motion that define the behavior of the PS and FSS. The analytical formulation presented is validated by a finite element (FE) study conducted in SAP2000. The influence of mass ratio, tuning frequency ratio, and excitation frequency ratio on the dynamic behavior of the PS is investigated. The results show that the combined system (PS+FSS) behaves as a modified single degree of freedom (SDOF) structure at higher tuning frequency ratios. The dynamic response of the structure is independent of the mass ratio at low tuning frequency ratio of FSS. Under seismic excitations, the flexible structure’s response reduces considerably as the mass ratio increases, compared to a stiff structure at a higher tuning frequency ratio. When the tuning frequency ratio is equal to one, smaller mass ratios of FSS increase the seismic performance of the stiff structure. A design methodology is proposed to measure the spectral acceleration of the primary structure by incorporating the effect of FSS in the design response spectrum. An analysis of the tuning frequency ratio and mass ratio on the modified design spectrum is also presented. Finally, the proposed design methodology is validated with an existing study.
    • Download: (1.854Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Flexibly Attached Secondary Systems on Dynamic Behavior of Light Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282254
    Collections
    • Journal of Structural Design and Construction Practice

    Show full item record

    contributor authorS. P. Challagulla
    contributor authorC. Parimi
    contributor authorEhsan Noroozinejad Farsangi
    date accessioned2022-05-07T20:18:32Z
    date available2022-05-07T20:18:32Z
    date issued2021-09-25
    identifier other(ASCE)SC.1943-5576.0000634.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282254
    description abstractThis paper investigates the effect of flexibly attached secondary systems (FSS) on the dynamic behavior of primary structures (PS) under harmonic and seismic ground excitations. An FSS affects the main structure during ground excitation differently than a secondary system that is rigidly attached to it. Small displacements in the FSS are used to derive the equations of motion that define the behavior of the PS and FSS. The analytical formulation presented is validated by a finite element (FE) study conducted in SAP2000. The influence of mass ratio, tuning frequency ratio, and excitation frequency ratio on the dynamic behavior of the PS is investigated. The results show that the combined system (PS+FSS) behaves as a modified single degree of freedom (SDOF) structure at higher tuning frequency ratios. The dynamic response of the structure is independent of the mass ratio at low tuning frequency ratio of FSS. Under seismic excitations, the flexible structure’s response reduces considerably as the mass ratio increases, compared to a stiff structure at a higher tuning frequency ratio. When the tuning frequency ratio is equal to one, smaller mass ratios of FSS increase the seismic performance of the stiff structure. A design methodology is proposed to measure the spectral acceleration of the primary structure by incorporating the effect of FSS in the design response spectrum. An analysis of the tuning frequency ratio and mass ratio on the modified design spectrum is also presented. Finally, the proposed design methodology is validated with an existing study.
    publisherASCE
    titleEffect of Flexibly Attached Secondary Systems on Dynamic Behavior of Light Structures
    typeJournal Paper
    journal volume27
    journal issue1
    journal titlePractice Periodical on Structural Design and Construction
    identifier doi10.1061/(ASCE)SC.1943-5576.0000634
    journal fristpage04021057
    journal lastpage04021057-12
    page12
    treePractice Periodical on Structural Design and Construction:;2021:;Volume ( 027 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian