YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Robust Design Optimization of Concrete Circular Underground Pipes Considering Seismic Effects

    Source: Journal of Pipeline Systems Engineering and Practice:;2022:;Volume ( 013 ):;issue: 002::page 05022003
    Author:
    Soumya Bhattacharjya
    ,
    Gaurav Datta
    ,
    Hari Govind Surya Dutta Aravapalli
    DOI: 10.1061/(ASCE)PS.1949-1204.0000648
    Publisher: ASCE
    Abstract: Robust design optimization (RDO) of an existing underground reinforced concrete pipe subjected to seismic load is presented. The pipe considered is from a straight section of a water transmission pipeline system located in Kolkata City, India. Ovaling deformation due to earthquake is considered in the RDO. The seismic effect has been estimated by a “simplified” model based on beams on elastic foundation subjected to sinusoidal seismic waves, and validated with a more detailed nonlinear time-history analysis of the finite element model of pipe. Generally, underground structures are designed considering all parameters to be deterministic. However, along with the random seismic load, there are other parameters that are random and chaotic. To consider those, the RDO has been executed in the following two separate modules: (1) under probabilistic uncertainty; and (2) with uncertain-but-bounded (UBB) type parameters (as many system parameters cannot be ascertained accurately with their prevailing statistics). The deterministic design optimization problem is cast as a cost minimization problem subjected to moment, shear, axial thrust, and crack control constraints. The uncertainty is incorporated by Monte Carlo simulation (MCS). The probabilistic RDO case is formulated by the weighted sum method and the penalty function approach, whereas the UBB-based RDO is posed through hyperellipsoidal convex programming. The results of RDO with probabilistic parameters, UBB parameters, and the ASCE and British code-based deterministic approaches are compared. The results show that the RDO yields design solutions that require marginally higher costs than the conventional ASCE or British code-based design, even when considering the seismic effect. With the RDO approach, optimal design solutions become insensitive to uncertainty effects. It has been observed that, by accepting a marginal increment in costs, a designer can achieve a reliable, sustainable, and economical solution through the present RDO approach.
    • Download: (2.186Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Robust Design Optimization of Concrete Circular Underground Pipes Considering Seismic Effects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282239
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorSoumya Bhattacharjya
    contributor authorGaurav Datta
    contributor authorHari Govind Surya Dutta Aravapalli
    date accessioned2022-05-07T20:17:49Z
    date available2022-05-07T20:17:49Z
    date issued2022-03-11
    identifier other(ASCE)PS.1949-1204.0000648.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282239
    description abstractRobust design optimization (RDO) of an existing underground reinforced concrete pipe subjected to seismic load is presented. The pipe considered is from a straight section of a water transmission pipeline system located in Kolkata City, India. Ovaling deformation due to earthquake is considered in the RDO. The seismic effect has been estimated by a “simplified” model based on beams on elastic foundation subjected to sinusoidal seismic waves, and validated with a more detailed nonlinear time-history analysis of the finite element model of pipe. Generally, underground structures are designed considering all parameters to be deterministic. However, along with the random seismic load, there are other parameters that are random and chaotic. To consider those, the RDO has been executed in the following two separate modules: (1) under probabilistic uncertainty; and (2) with uncertain-but-bounded (UBB) type parameters (as many system parameters cannot be ascertained accurately with their prevailing statistics). The deterministic design optimization problem is cast as a cost minimization problem subjected to moment, shear, axial thrust, and crack control constraints. The uncertainty is incorporated by Monte Carlo simulation (MCS). The probabilistic RDO case is formulated by the weighted sum method and the penalty function approach, whereas the UBB-based RDO is posed through hyperellipsoidal convex programming. The results of RDO with probabilistic parameters, UBB parameters, and the ASCE and British code-based deterministic approaches are compared. The results show that the RDO yields design solutions that require marginally higher costs than the conventional ASCE or British code-based design, even when considering the seismic effect. With the RDO approach, optimal design solutions become insensitive to uncertainty effects. It has been observed that, by accepting a marginal increment in costs, a designer can achieve a reliable, sustainable, and economical solution through the present RDO approach.
    publisherASCE
    titleRobust Design Optimization of Concrete Circular Underground Pipes Considering Seismic Effects
    typeJournal Paper
    journal volume13
    journal issue2
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/(ASCE)PS.1949-1204.0000648
    journal fristpage05022003
    journal lastpage05022003-12
    page12
    treeJournal of Pipeline Systems Engineering and Practice:;2022:;Volume ( 013 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian