YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Solution for Deformation Characteristics of Buried High-Density Polyethylene Pipes Considering Temperature Variations

    Source: Journal of Pipeline Systems Engineering and Practice:;2022:;Volume ( 013 ):;issue: 002::page 04022011
    Author:
    Yuchen Zhang
    ,
    Jianyong Shi
    ,
    Weiwen Fang
    DOI: 10.1061/(ASCE)PS.1949-1204.0000645
    Publisher: ASCE
    Abstract: Buried high-density polyethylene (HDPE) pipes are widely used in solid waste landfills, heap-leach mining pads, large earth dams, and other infrastructures. Large earth pressures and elevated temperatures in these applications can lead to the failure of HDPE pipes, resulting in pipes plugged in the drainage system and increases in the leachate level. High leachate levels contribute to landslides in landfills. Based on the theory of elasticity, a plane strain pipe-soil interaction model was developed to investigate the deformation characteristics of HDPE pipes while considering the influence of temperature. Analytical solutions were obtained under perfectly smooth and fully bonded interfaces. The solutions and calculated results were verified using the Höeg formula and the results of laboratory tests. The results show that the Höeg formula is applicable to pipes with a standard dimension ratio (SDR = nominal diameter/wall thickness) greater than 40. In contrast, the analytical solutions obtained in this paper are relatively accurate for calculating the deformation characteristics of pipes when the SDR of the pipes is less than 40, as in the case of most landfills. A parametric analysis was conducted, and implications for landfills were analyzed. Furthermore, simplified equations were derived for landfill design, and preliminary suggestions were provided regarding the waste height control and temperature regulations in landfill operations. To ensure the safety and stability of HDPE pipes and to avoid environmental damage, the maximum waste temperature of the landfill should be regulated under a certain waste height, and the waste height should be controlled against a given maximum waste temperature. According to the simplified equations, the security of the drainage system can be evaluated with monitored waste height and temperature, and pipes plugged in the drainage system could be avoided.
    • Download: (2.543Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Solution for Deformation Characteristics of Buried High-Density Polyethylene Pipes Considering Temperature Variations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282236
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorYuchen Zhang
    contributor authorJianyong Shi
    contributor authorWeiwen Fang
    date accessioned2022-05-07T20:17:39Z
    date available2022-05-07T20:17:39Z
    date issued2022-03-04
    identifier other(ASCE)PS.1949-1204.0000645.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282236
    description abstractBuried high-density polyethylene (HDPE) pipes are widely used in solid waste landfills, heap-leach mining pads, large earth dams, and other infrastructures. Large earth pressures and elevated temperatures in these applications can lead to the failure of HDPE pipes, resulting in pipes plugged in the drainage system and increases in the leachate level. High leachate levels contribute to landslides in landfills. Based on the theory of elasticity, a plane strain pipe-soil interaction model was developed to investigate the deformation characteristics of HDPE pipes while considering the influence of temperature. Analytical solutions were obtained under perfectly smooth and fully bonded interfaces. The solutions and calculated results were verified using the Höeg formula and the results of laboratory tests. The results show that the Höeg formula is applicable to pipes with a standard dimension ratio (SDR = nominal diameter/wall thickness) greater than 40. In contrast, the analytical solutions obtained in this paper are relatively accurate for calculating the deformation characteristics of pipes when the SDR of the pipes is less than 40, as in the case of most landfills. A parametric analysis was conducted, and implications for landfills were analyzed. Furthermore, simplified equations were derived for landfill design, and preliminary suggestions were provided regarding the waste height control and temperature regulations in landfill operations. To ensure the safety and stability of HDPE pipes and to avoid environmental damage, the maximum waste temperature of the landfill should be regulated under a certain waste height, and the waste height should be controlled against a given maximum waste temperature. According to the simplified equations, the security of the drainage system can be evaluated with monitored waste height and temperature, and pipes plugged in the drainage system could be avoided.
    publisherASCE
    titleAnalytical Solution for Deformation Characteristics of Buried High-Density Polyethylene Pipes Considering Temperature Variations
    typeJournal Paper
    journal volume13
    journal issue2
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/(ASCE)PS.1949-1204.0000645
    journal fristpage04022011
    journal lastpage04022011-12
    page12
    treeJournal of Pipeline Systems Engineering and Practice:;2022:;Volume ( 013 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian