YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimating Particle Froude Number of Sewer Pipes by Boosting Machine-Learning Models

    Source: Journal of Pipeline Systems Engineering and Practice:;2022:;Volume ( 013 ):;issue: 002::page 04022012
    Author:
    Deepti Shakya
    ,
    Mayank Agarwal
    ,
    Vishal Deshpande
    ,
    Bimlesh Kumar
    DOI: 10.1061/(ASCE)PS.1949-1204.0000643
    Publisher: ASCE
    Abstract: Sediment deposition impacts the hydraulic capacity of a channel in urban drainage and sewer systems. To reduce the impact of this continuous deposition of sediment particles, sewer systems are typically designed with a self-cleansing mechanism to keep the bottom of the channel clean from sedimentation. Therefore, accurate prediction of the particle Froude number (Fr) is important in designing sewer systems. This study used five data sets available in the literature, comprising wide ranges of the volumetric sediment concentration (Cv), dimensionless grain size of particles (Dgr), sediment median size (d), hydraulic radius (R), pipe friction factor (λ) for the condition of nondeposition with deposited bed. Five different input variable combinations were considered for the prediction of Fr. Four boosting machine-learning models, i.e., AdaboostRegressor, GradientBoostingRegressor, CatboostRegressor, and LightGBMRegressor, were developed, and the results obtained were compared with the existing empirical equations as well as state-of-the-art approaches proposed in the literature. To evaluate the proposed models, several performance metrics were used, such as index of agreement (Id), mean absolute error (MAE), root-mean-square error (RMSE), R2, and adjusted R2. AdaboostRegressor (Id=0.981, MAE=0.483, RMSE=0.591, R2=0.940, and adjusted R2=0.937) provided better results, followed by GradientBoostingRegressor, CatboostRegressor, and LightGBMRegressor. The boosting techniques used in this study performed better than multigene genetic programming, gene expression programming, multilayer perceptron (MLP), and the empirical equations proposed in the literature, indicating superior performance.
    • Download: (981.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimating Particle Froude Number of Sewer Pipes by Boosting Machine-Learning Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282234
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorDeepti Shakya
    contributor authorMayank Agarwal
    contributor authorVishal Deshpande
    contributor authorBimlesh Kumar
    date accessioned2022-05-07T20:17:33Z
    date available2022-05-07T20:17:33Z
    date issued2022-03-10
    identifier other(ASCE)PS.1949-1204.0000643.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282234
    description abstractSediment deposition impacts the hydraulic capacity of a channel in urban drainage and sewer systems. To reduce the impact of this continuous deposition of sediment particles, sewer systems are typically designed with a self-cleansing mechanism to keep the bottom of the channel clean from sedimentation. Therefore, accurate prediction of the particle Froude number (Fr) is important in designing sewer systems. This study used five data sets available in the literature, comprising wide ranges of the volumetric sediment concentration (Cv), dimensionless grain size of particles (Dgr), sediment median size (d), hydraulic radius (R), pipe friction factor (λ) for the condition of nondeposition with deposited bed. Five different input variable combinations were considered for the prediction of Fr. Four boosting machine-learning models, i.e., AdaboostRegressor, GradientBoostingRegressor, CatboostRegressor, and LightGBMRegressor, were developed, and the results obtained were compared with the existing empirical equations as well as state-of-the-art approaches proposed in the literature. To evaluate the proposed models, several performance metrics were used, such as index of agreement (Id), mean absolute error (MAE), root-mean-square error (RMSE), R2, and adjusted R2. AdaboostRegressor (Id=0.981, MAE=0.483, RMSE=0.591, R2=0.940, and adjusted R2=0.937) provided better results, followed by GradientBoostingRegressor, CatboostRegressor, and LightGBMRegressor. The boosting techniques used in this study performed better than multigene genetic programming, gene expression programming, multilayer perceptron (MLP), and the empirical equations proposed in the literature, indicating superior performance.
    publisherASCE
    titleEstimating Particle Froude Number of Sewer Pipes by Boosting Machine-Learning Models
    typeJournal Paper
    journal volume13
    journal issue2
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/(ASCE)PS.1949-1204.0000643
    journal fristpage04022012
    journal lastpage04022012-12
    page12
    treeJournal of Pipeline Systems Engineering and Practice:;2022:;Volume ( 013 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian