YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Operation Optimization of Multiroute Cyclic Natural Gas Transmission Network under Different Objectives

    Source: Journal of Pipeline Systems Engineering and Practice:;2021:;Volume ( 013 ):;issue: 001::page 04021079
    Author:
    Jun Zhou
    ,
    Jinghong Peng
    ,
    Guangchuan Liang
    ,
    Cao Peng
    DOI: 10.1061/(ASCE)PS.1949-1204.0000628
    Publisher: ASCE
    Abstract: Natural gas transmission networks (NGTNs) are the main facility connecting upstream gas sources and downstream consumers. For a cyclic NGTN with multiple gas transmission routes, different gas transportation schemes will affect not only the energy consumption of the system but also the pipeline transportation costs paid by consumers. In this paper, three operation optimization models are established to determine the optimal operating state of a multiroute cyclic NGTN under different scenarios. The three mathematical models correspond to three different objective functions: minimize the cost of compressor energy consumption, minimize the expense of pipeline transportation, and minimize the sum of the two expenses. The decision variables of the models include the pipeline flow rate, the number of operating compressors, and the outlet pressure of the compressors. In addition, a series of linear and nonlinear constraints of nodes, pipelines, and compressors is also proposed to guarantee the feasibility of solutions. The operation optimization problem is solved by the General Algebraic Modeling System (GAMS), and the effectiveness of this method is tested on a small double-route cyclic NGTN and a large three-route cyclic NGTN. The results show that the developed optimization model is able to find optimal solutions under different models. In the cyclic network, the difference in the flow distribution of gas transmission routes is the key factor affecting the optimization result. In addition, compared with the compressor energy consumption cost minimization objective, the pipeline transportation expense minimization objective can create greater economic benefits for consumers. In the two network cases, consumers can save 14.51 and 59.18×104 RMB. Finally, optimizing the two objectives at the same time makes it possible to achieve an effective balance between them.
    • Download: (1.444Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Operation Optimization of Multiroute Cyclic Natural Gas Transmission Network under Different Objectives

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282218
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorJun Zhou
    contributor authorJinghong Peng
    contributor authorGuangchuan Liang
    contributor authorCao Peng
    date accessioned2022-05-07T20:16:47Z
    date available2022-05-07T20:16:47Z
    date issued2021-11-26
    identifier other(ASCE)PS.1949-1204.0000628.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282218
    description abstractNatural gas transmission networks (NGTNs) are the main facility connecting upstream gas sources and downstream consumers. For a cyclic NGTN with multiple gas transmission routes, different gas transportation schemes will affect not only the energy consumption of the system but also the pipeline transportation costs paid by consumers. In this paper, three operation optimization models are established to determine the optimal operating state of a multiroute cyclic NGTN under different scenarios. The three mathematical models correspond to three different objective functions: minimize the cost of compressor energy consumption, minimize the expense of pipeline transportation, and minimize the sum of the two expenses. The decision variables of the models include the pipeline flow rate, the number of operating compressors, and the outlet pressure of the compressors. In addition, a series of linear and nonlinear constraints of nodes, pipelines, and compressors is also proposed to guarantee the feasibility of solutions. The operation optimization problem is solved by the General Algebraic Modeling System (GAMS), and the effectiveness of this method is tested on a small double-route cyclic NGTN and a large three-route cyclic NGTN. The results show that the developed optimization model is able to find optimal solutions under different models. In the cyclic network, the difference in the flow distribution of gas transmission routes is the key factor affecting the optimization result. In addition, compared with the compressor energy consumption cost minimization objective, the pipeline transportation expense minimization objective can create greater economic benefits for consumers. In the two network cases, consumers can save 14.51 and 59.18×104 RMB. Finally, optimizing the two objectives at the same time makes it possible to achieve an effective balance between them.
    publisherASCE
    titleOperation Optimization of Multiroute Cyclic Natural Gas Transmission Network under Different Objectives
    typeJournal Paper
    journal volume13
    journal issue1
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/(ASCE)PS.1949-1204.0000628
    journal fristpage04021079
    journal lastpage04021079-11
    page11
    treeJournal of Pipeline Systems Engineering and Practice:;2021:;Volume ( 013 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian