YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Asphalt Mortar Viscoelasticity on Microstructural Fracture Behavior of Asphalt Mixture Based on Cohesive Zone Model

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007::page 04022122
    Author:
    Haopeng Zhang
    ,
    Haibo Ding
    ,
    Ali Rahman
    DOI: 10.1061/(ASCE)MT.1943-5533.0004277
    Publisher: ASCE
    Abstract: Racking in asphalt pavements has always been the leading cause of pavement damage. This study aims at investigating the effects of mesostructure characteristics of asphalt mixture on the fracture behavior of semicircular bending (SCB) samples. To fulfill this objective, a two-dimensional (2D) finite-element model (FEM) of an asphalt mixture considering viscoelastic properties was established by using digital image processing (DIP) technology and a cohesive zone model (CZM). The FEM method was validated based on experimental results. On this basis, the whole process of crack initiation and propagation, the damage distribution of cohesive elements, and the effects of mesostructure characteristics (such as voids, interface strength between aggregate and asphalt mortar, and initial crack length) on damage and fracture behavior of SCB samples were analyzed. It was observed that with increasing porosity, the ultimate bearing capacity of the specimen decreased, and the cracks propagated towards the path with more air voids. The air voids far away from the crack propagation path had minimal effect on the ultimate bearing capacity of the specimen but could induce new damaged cohesive elements. With the decrease of the interface strength of aggregate-asphalt mortar, the maximum bearing capacity of the samples decreased, and the proportion of the cohesive elements with more significant damage at the interface increased accordingly. The resulting bearing capacity, fracture energy, and creep dissipation energy of the specimens reduced gradually with increasing initial crack length.
    • Download: (3.366Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Asphalt Mortar Viscoelasticity on Microstructural Fracture Behavior of Asphalt Mixture Based on Cohesive Zone Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282146
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorHaopeng Zhang
    contributor authorHaibo Ding
    contributor authorAli Rahman
    date accessioned2022-05-07T20:13:29Z
    date available2022-05-07T20:13:29Z
    date issued2022-04-20
    identifier other(ASCE)MT.1943-5533.0004277.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282146
    description abstractRacking in asphalt pavements has always been the leading cause of pavement damage. This study aims at investigating the effects of mesostructure characteristics of asphalt mixture on the fracture behavior of semicircular bending (SCB) samples. To fulfill this objective, a two-dimensional (2D) finite-element model (FEM) of an asphalt mixture considering viscoelastic properties was established by using digital image processing (DIP) technology and a cohesive zone model (CZM). The FEM method was validated based on experimental results. On this basis, the whole process of crack initiation and propagation, the damage distribution of cohesive elements, and the effects of mesostructure characteristics (such as voids, interface strength between aggregate and asphalt mortar, and initial crack length) on damage and fracture behavior of SCB samples were analyzed. It was observed that with increasing porosity, the ultimate bearing capacity of the specimen decreased, and the cracks propagated towards the path with more air voids. The air voids far away from the crack propagation path had minimal effect on the ultimate bearing capacity of the specimen but could induce new damaged cohesive elements. With the decrease of the interface strength of aggregate-asphalt mortar, the maximum bearing capacity of the samples decreased, and the proportion of the cohesive elements with more significant damage at the interface increased accordingly. The resulting bearing capacity, fracture energy, and creep dissipation energy of the specimens reduced gradually with increasing initial crack length.
    publisherASCE
    titleEffect of Asphalt Mortar Viscoelasticity on Microstructural Fracture Behavior of Asphalt Mixture Based on Cohesive Zone Model
    typeJournal Paper
    journal volume34
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004277
    journal fristpage04022122
    journal lastpage04022122-12
    page12
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian