YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fiber-Emulsified Asphalt Cold-Recycled Mixture Produced Using Vertical Vibration Compaction: Performance Study

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007::page 04022114
    Author:
    Tian Tian
    ,
    Yingjun Jiang
    ,
    Yong Yi
    ,
    Jiangtao Fan
    ,
    Difeng Yang
    ,
    Changqing Deng
    DOI: 10.1061/(ASCE)MT.1943-5533.0004254
    Publisher: ASCE
    Abstract: The effects of fiber type and content on the properties of emulsified asphalt cold recycled mixture (ECRM) produced using vertical vibration compaction are examined. The reliability of the vertical vibration testing method (VVTM) is verified by comparing the physical properties of VVTM-prepared samples with those prepared via the Marshall compaction method (MCM) and with the mechanical properties of core samples from a construction site. Furthermore, the mechanical strength and pavement performance of ECRM with different fibers are tested. Finally, using the entropy-weight technique for order of preference by similarity to ideal solution (TOPSIS) model, the fiber type and content for the optimal comprehensive performance of ECRM are recommended. Results show that the correlation between the mechanical strength of the VVTM-prepared ECRM sample and construction site core sample is >90%. An increase in fiber content first increases and then decreases the mechanical strength and road performance of the ECRM; its influence on water stability is not significant. With the same fiber content, the improvement effect of four fiber types on ECRM’s comprehensive performance is ordered as follows: lignin fiber > polyester fiber > mineral fiber > basalt fiber. Based on the entropy-weight TOPSIS model, 0.4% lignin fiber content is the optimal scheme for the comprehensive performance of ECRM. Overall, the results provide a reference for the fiber type and content selection for ECRM and have important engineering significance for improving ECRM’s comprehensive performance.
    • Download: (586.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fiber-Emulsified Asphalt Cold-Recycled Mixture Produced Using Vertical Vibration Compaction: Performance Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282134
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorTian Tian
    contributor authorYingjun Jiang
    contributor authorYong Yi
    contributor authorJiangtao Fan
    contributor authorDifeng Yang
    contributor authorChangqing Deng
    date accessioned2022-05-07T20:12:53Z
    date available2022-05-07T20:12:53Z
    date issued2022-04-18
    identifier other(ASCE)MT.1943-5533.0004254.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282134
    description abstractThe effects of fiber type and content on the properties of emulsified asphalt cold recycled mixture (ECRM) produced using vertical vibration compaction are examined. The reliability of the vertical vibration testing method (VVTM) is verified by comparing the physical properties of VVTM-prepared samples with those prepared via the Marshall compaction method (MCM) and with the mechanical properties of core samples from a construction site. Furthermore, the mechanical strength and pavement performance of ECRM with different fibers are tested. Finally, using the entropy-weight technique for order of preference by similarity to ideal solution (TOPSIS) model, the fiber type and content for the optimal comprehensive performance of ECRM are recommended. Results show that the correlation between the mechanical strength of the VVTM-prepared ECRM sample and construction site core sample is >90%. An increase in fiber content first increases and then decreases the mechanical strength and road performance of the ECRM; its influence on water stability is not significant. With the same fiber content, the improvement effect of four fiber types on ECRM’s comprehensive performance is ordered as follows: lignin fiber > polyester fiber > mineral fiber > basalt fiber. Based on the entropy-weight TOPSIS model, 0.4% lignin fiber content is the optimal scheme for the comprehensive performance of ECRM. Overall, the results provide a reference for the fiber type and content selection for ECRM and have important engineering significance for improving ECRM’s comprehensive performance.
    publisherASCE
    titleFiber-Emulsified Asphalt Cold-Recycled Mixture Produced Using Vertical Vibration Compaction: Performance Study
    typeJournal Paper
    journal volume34
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004254
    journal fristpage04022114
    journal lastpage04022114-13
    page13
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian