YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Research on Hysteretic Behavior of Corroded Steel Plate Considering Surface Topography

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 006::page 04022103
    Author:
    Meng Zhan
    ,
    Xiaoyu Wang
    ,
    Xiuyun Chen
    ,
    Guangchong Qin
    DOI: 10.1061/(ASCE)MT.1943-5533.0004252
    Publisher: ASCE
    Abstract: The aim of this study is to investigate the effect of corrosion on the hysteretic behavior of Q235 steel. To this end, the surface features of Q235 steel specimens subjected to different corrosion durations are determined using a reverse reconstruction method based on the experimental data of corrosion pit configuration. The buckling and hysteretic behaviors of these specimens are analyzed using a numerical simulation method that considers corrosion surface characteristics. The results show that the buckling of corroded specimens occurs at the weak parts of plates with large corrosion pits under cyclic loading. The surface characteristics have a significant influence on the buckling stress of corroded steel, which results in stress mutation at corrosion pits and a change in load gradient. In addition, an increase in the surface roughness and width-to-thickness ratio due to corrosion are the main reasons for the degradation of the buckling and hysteretic behavior of the corroded specimens. The ultimate load-carrying capacity and elastic stiffness decrease with increases in corrosion degree. The hysteretic energy of specimens decreases by nearly 33% as the average mass loss ratio increases by 19%. Finally, a nominal cyclic constitutive model of corroded steel is proposed, and the results essentially agree with the numerical simulation results.
    • Download: (3.119Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Research on Hysteretic Behavior of Corroded Steel Plate Considering Surface Topography

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282132
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMeng Zhan
    contributor authorXiaoyu Wang
    contributor authorXiuyun Chen
    contributor authorGuangchong Qin
    date accessioned2022-05-07T20:12:51Z
    date available2022-05-07T20:12:51Z
    date issued2022-03-22
    identifier other(ASCE)MT.1943-5533.0004252.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282132
    description abstractThe aim of this study is to investigate the effect of corrosion on the hysteretic behavior of Q235 steel. To this end, the surface features of Q235 steel specimens subjected to different corrosion durations are determined using a reverse reconstruction method based on the experimental data of corrosion pit configuration. The buckling and hysteretic behaviors of these specimens are analyzed using a numerical simulation method that considers corrosion surface characteristics. The results show that the buckling of corroded specimens occurs at the weak parts of plates with large corrosion pits under cyclic loading. The surface characteristics have a significant influence on the buckling stress of corroded steel, which results in stress mutation at corrosion pits and a change in load gradient. In addition, an increase in the surface roughness and width-to-thickness ratio due to corrosion are the main reasons for the degradation of the buckling and hysteretic behavior of the corroded specimens. The ultimate load-carrying capacity and elastic stiffness decrease with increases in corrosion degree. The hysteretic energy of specimens decreases by nearly 33% as the average mass loss ratio increases by 19%. Finally, a nominal cyclic constitutive model of corroded steel is proposed, and the results essentially agree with the numerical simulation results.
    publisherASCE
    titleResearch on Hysteretic Behavior of Corroded Steel Plate Considering Surface Topography
    typeJournal Paper
    journal volume34
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004252
    journal fristpage04022103
    journal lastpage04022103-10
    page10
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian