YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Behavior of Novel Precast TL-5 Bridge Barriers Using Ultrahigh-Performance Fiber-Reinforced Concretes

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 003::page 04021113
    Author:
    Frédérick Gendron
    ,
    Clélia Desmettre
    ,
    Jean-Philippe Charron
    DOI: 10.1061/(ASCE)BE.1943-5592.0001826
    Publisher: ASCE
    Abstract: Experimental testing and numerical modeling were performed on novel precast TL-5 barriers subjected to centered and eccentric loadings in a quasi-static mode. The mechanical behavior of two precast barrier configurations was analyzed and compared: a hybrid barrier including a normal strength concrete (NSC) core and a ultrahigh performance fiber reinforced concrete (UHPFRC) shell with a UHPFRC barrier–slab connection, and a precast version of a cast-in-place QMT301 barrier made of NSC with a UHPFRC barrier–slab connection. Laboratory experiments on 2-m precast barriers under eccentric loading applied on 0.7 m demonstrated a shear failure in the upper portion of the hybrid and QMT barriers while the UHPFRC connection recess remained elastic, as observed in the cast-in-place solution. The longitudinal connection between precast barriers increased the maximal capacity under eccentric loading at the connected end. Numerical models were carried out on 2–6 -m precast barriers, under centered and eccentric loading, with 0.7 and 2.4 m loading lengths. Models showed the critical effects of shorter barrier length (2 m), shorter loading length (0.7), and eccentric loading as these factors significantly reduce the ultimate capacity of the precast barrier. Models validated with experiments confirmed that the load-carrying capacities of the developed precast TL-5 hybrid and QMT301 barriers surpass the minimum CSA and AASHTO design load requirements when considering 4-m barrier modules loaded on 2.4 m, whether or not there is a longitudinal connection and whether the loading is centered or eccentric.
    • Download: (2.482Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Behavior of Novel Precast TL-5 Bridge Barriers Using Ultrahigh-Performance Fiber-Reinforced Concretes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282127
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorFrédérick Gendron
    contributor authorClélia Desmettre
    contributor authorJean-Philippe Charron
    date accessioned2022-05-07T20:12:38Z
    date available2022-05-07T20:12:38Z
    date issued2022-3-1
    identifier other(ASCE)BE.1943-5592.0001826.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282127
    description abstractExperimental testing and numerical modeling were performed on novel precast TL-5 barriers subjected to centered and eccentric loadings in a quasi-static mode. The mechanical behavior of two precast barrier configurations was analyzed and compared: a hybrid barrier including a normal strength concrete (NSC) core and a ultrahigh performance fiber reinforced concrete (UHPFRC) shell with a UHPFRC barrier–slab connection, and a precast version of a cast-in-place QMT301 barrier made of NSC with a UHPFRC barrier–slab connection. Laboratory experiments on 2-m precast barriers under eccentric loading applied on 0.7 m demonstrated a shear failure in the upper portion of the hybrid and QMT barriers while the UHPFRC connection recess remained elastic, as observed in the cast-in-place solution. The longitudinal connection between precast barriers increased the maximal capacity under eccentric loading at the connected end. Numerical models were carried out on 2–6 -m precast barriers, under centered and eccentric loading, with 0.7 and 2.4 m loading lengths. Models showed the critical effects of shorter barrier length (2 m), shorter loading length (0.7), and eccentric loading as these factors significantly reduce the ultimate capacity of the precast barrier. Models validated with experiments confirmed that the load-carrying capacities of the developed precast TL-5 hybrid and QMT301 barriers surpass the minimum CSA and AASHTO design load requirements when considering 4-m barrier modules loaded on 2.4 m, whether or not there is a longitudinal connection and whether the loading is centered or eccentric.
    publisherASCE
    titleStructural Behavior of Novel Precast TL-5 Bridge Barriers Using Ultrahigh-Performance Fiber-Reinforced Concretes
    typeJournal Paper
    journal volume27
    journal issue3
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001826
    journal fristpage04021113
    journal lastpage04021113-14
    page14
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian