YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Moisture, Rutting, and Fatigue-Cracking Susceptibility of Water-Carrying, Wax-Based, and Chemical-Based Warm Mix Asphalt Systems

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 006::page 04022099
    Author:
    Aboelkasim Diab
    ,
    Nikhil Saboo
    ,
    Lingyun You
    DOI: 10.1061/(ASCE)MT.1943-5533.0004241
    Publisher: ASCE
    Abstract: The type of the manufacturing technology as well as the reduced production temperatures of warm mix asphalt (WMA) always raise controversy about the early life and long-term performance of WMA mixtures, more specifically concerning the resistance to stripping, permanent deformation, and fatigue cracking. The present paper is primarily oriented to evaluate such major controversial aspects of WMA moisture, rutting, and fatigue-cracking susceptibility. For this purpose, an experimental campaign and indices were developed to discern the properties among WMA systems in comparison to reference hot mix asphalt (HMA) system. The bonding strength (BS) test was developed to quantify the unconditioned and conditioned failures at the adhesive scale. In addition, the evolutions of the mechanical damage and air voids of asphalt mixtures under the effects of multiple freeze–thaw cycles (FTCs), were evaluated. The rutting susceptibility of mixes was assessed using a developed measure, namely, strain index (SI), which is based on strain/deformation results of the creep-recovery test. Continuous and intermittent fatigue tests were employed to determine fatigue life as well as the healing potential of the mixes. The zeolite-, wax-, and chemical-based WMA technologies provided comparable-to-better BS when compared with the HMA systems. Based on the results of unconditioned and retained tensile strength after multiple FTCs, moisture-induced degradation showed that HMA mixes can withstand more FTCs than WMA mixes. The results of SI indicated that the zeolite WMA produced at low temperature is more susceptible to rutting performance (i.e., lower SI), however the chemical-based mixtures are on par with that of HMA, but wax-based additive is more beneficial to mitigate such distress. The unfavorable influence of reduced production temperature (from 145°C to 120°C) was distinguishable for the rutting results only. The three WMA products produced asphalt mixes at reduced temperatures with better or comparable fatigue life. Using the intermittent fatigue tests, both the hot and warm mixes showed better healing efficiency.
    • Download: (937.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Moisture, Rutting, and Fatigue-Cracking Susceptibility of Water-Carrying, Wax-Based, and Chemical-Based Warm Mix Asphalt Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282121
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorAboelkasim Diab
    contributor authorNikhil Saboo
    contributor authorLingyun You
    date accessioned2022-05-07T20:12:24Z
    date available2022-05-07T20:12:24Z
    date issued2022-03-22
    identifier other(ASCE)MT.1943-5533.0004241.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282121
    description abstractThe type of the manufacturing technology as well as the reduced production temperatures of warm mix asphalt (WMA) always raise controversy about the early life and long-term performance of WMA mixtures, more specifically concerning the resistance to stripping, permanent deformation, and fatigue cracking. The present paper is primarily oriented to evaluate such major controversial aspects of WMA moisture, rutting, and fatigue-cracking susceptibility. For this purpose, an experimental campaign and indices were developed to discern the properties among WMA systems in comparison to reference hot mix asphalt (HMA) system. The bonding strength (BS) test was developed to quantify the unconditioned and conditioned failures at the adhesive scale. In addition, the evolutions of the mechanical damage and air voids of asphalt mixtures under the effects of multiple freeze–thaw cycles (FTCs), were evaluated. The rutting susceptibility of mixes was assessed using a developed measure, namely, strain index (SI), which is based on strain/deformation results of the creep-recovery test. Continuous and intermittent fatigue tests were employed to determine fatigue life as well as the healing potential of the mixes. The zeolite-, wax-, and chemical-based WMA technologies provided comparable-to-better BS when compared with the HMA systems. Based on the results of unconditioned and retained tensile strength after multiple FTCs, moisture-induced degradation showed that HMA mixes can withstand more FTCs than WMA mixes. The results of SI indicated that the zeolite WMA produced at low temperature is more susceptible to rutting performance (i.e., lower SI), however the chemical-based mixtures are on par with that of HMA, but wax-based additive is more beneficial to mitigate such distress. The unfavorable influence of reduced production temperature (from 145°C to 120°C) was distinguishable for the rutting results only. The three WMA products produced asphalt mixes at reduced temperatures with better or comparable fatigue life. Using the intermittent fatigue tests, both the hot and warm mixes showed better healing efficiency.
    publisherASCE
    titleMoisture, Rutting, and Fatigue-Cracking Susceptibility of Water-Carrying, Wax-Based, and Chemical-Based Warm Mix Asphalt Systems
    typeJournal Paper
    journal volume34
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004241
    journal fristpage04022099
    journal lastpage04022099-11
    page11
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian