YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Characterization of Fly Ash–Based Geopolymer and Type V Portland Cement Exposed to MgSO4

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 006::page 04022095
    Author:
    Hani Alanazi
    ,
    Yong-Rak Kim
    ,
    Jiong Hu
    ,
    Dallas N. Little
    ,
    Jong Suk Jung
    DOI: 10.1061/(ASCE)MT.1943-5533.0004240
    Publisher: ASCE
    Abstract: Fly ash–based geopolymer is an attractive supplemental cementitious material that has been receiving great attention from the community; however, its durability characteristics such as resistance to sulfate-related damage have not yet been fully examined. This study investigates the properties of fly ash–based geopolymer and its counterpart, Type V portland cement paste/mortar, when they are exposed to MgSO4 solution. Toward that end, a multiscale characterization was conducted. Changes in nanomechanical properties due to MgSO4 exposure were tracked and quantified by nanoindentation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were coupled to characterize microstructural and chemical changes at different MgSO4 exposure levels. Moreover, the effect of MgSO4 solution on macroscale properties, including changes in mass and compressive strength, were examined. Results indicated that exposure to MgSO4 solution affected the two cementitious materials very differently. No significant sign of deterioration was observed in fly ash–based geopolymer, although MgSO4 changed the chemical compositions by increasing Mg content and decreasing Na in the original N-A-S-H gel. On the contrary, Type V portland cement presented the degradation of the main hydration product due to the decalcification process with increasing MgSO4 exposure. This resulted in a significant drop of Ca/Si ratio and compressive strength after 6 months of MgSO4 immersion. Test-analysis results in different length scales in this study imply that fly ash–based geopolymer can be a durable material under MgSO4 environments.
    • Download: (2.333Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Characterization of Fly Ash–Based Geopolymer and Type V Portland Cement Exposed to MgSO4

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282120
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorHani Alanazi
    contributor authorYong-Rak Kim
    contributor authorJiong Hu
    contributor authorDallas N. Little
    contributor authorJong Suk Jung
    date accessioned2022-05-07T20:12:22Z
    date available2022-05-07T20:12:22Z
    date issued2022-03-21
    identifier other(ASCE)MT.1943-5533.0004240.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282120
    description abstractFly ash–based geopolymer is an attractive supplemental cementitious material that has been receiving great attention from the community; however, its durability characteristics such as resistance to sulfate-related damage have not yet been fully examined. This study investigates the properties of fly ash–based geopolymer and its counterpart, Type V portland cement paste/mortar, when they are exposed to MgSO4 solution. Toward that end, a multiscale characterization was conducted. Changes in nanomechanical properties due to MgSO4 exposure were tracked and quantified by nanoindentation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were coupled to characterize microstructural and chemical changes at different MgSO4 exposure levels. Moreover, the effect of MgSO4 solution on macroscale properties, including changes in mass and compressive strength, were examined. Results indicated that exposure to MgSO4 solution affected the two cementitious materials very differently. No significant sign of deterioration was observed in fly ash–based geopolymer, although MgSO4 changed the chemical compositions by increasing Mg content and decreasing Na in the original N-A-S-H gel. On the contrary, Type V portland cement presented the degradation of the main hydration product due to the decalcification process with increasing MgSO4 exposure. This resulted in a significant drop of Ca/Si ratio and compressive strength after 6 months of MgSO4 immersion. Test-analysis results in different length scales in this study imply that fly ash–based geopolymer can be a durable material under MgSO4 environments.
    publisherASCE
    titleMultiscale Characterization of Fly Ash–Based Geopolymer and Type V Portland Cement Exposed to MgSO4
    typeJournal Paper
    journal volume34
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004240
    journal fristpage04022095
    journal lastpage04022095-12
    page12
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian