YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nanostructural and Nanomechanical Properties of LDPE-Modified Binders

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 006::page 04022081
    Author:
    Mohammad Fuad Aljarrah
    ,
    K. Lakshmi Roja
    ,
    Eyad Masad
    ,
    Mabrouk Ouederni
    ,
    Oluwagbemi Banji Ibikunle
    DOI: 10.1061/(ASCE)MT.1943-5533.0004220
    Publisher: ASCE
    Abstract: The main objective of this study is to explore the effects of various asphalt binder modifiers, including styrene–butadiene–styrene (SBS), elemental sulfur, reactive ethylene terpolymer (Elvaloy), and polyphosphoric acid (PPA) polymers on the nanostructural and nanomechanical (elastic and viscoelastic) properties of low-density polyethylene (LDPE)-modified binders. The study also aims to investigate the effect of aging on the nanoproperties of such blends. To this end, we used the PeakForce quantitative nanomechanical mapping (PFQNM) test and the nanoscale dynamic mechanical analysis (nDMA) test by means of atomic force microscopy. We further utilized the nanoscale results to better understand and interpret the bulk scale properties obtained using the dynamic shear rheometer (DSR). The nDMA results indicated an increase in stiffness and an enhancement in the elastic behavior of the blends after modification. Moreover, the blends exhibited a stiffer and more elastic behavior at the nanoscale when compared with the bulk DSR test results. Using Elvaloy and Elvaloy+PPA greatly enhanced the bond between LDPE and the binder. Both blends also showed resistance to heat-induced polymer separation and aging. Furthermore, the addition of SBS+sulfur enhanced LDPE dispersion within the binder. It was demonstrated that the use of elemental sulfur showed high efficacy in stabilizing LDPE-modified binders by inducing physical interaction between LDPE and the binder. Lastly, we concluded that the nanoscale measurements are very useful in understanding the local interactions, explaining the main aspects of the response at the bulk scale, and in the design of asphalt blends with improved properties.
    • Download: (2.805Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nanostructural and Nanomechanical Properties of LDPE-Modified Binders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282099
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMohammad Fuad Aljarrah
    contributor authorK. Lakshmi Roja
    contributor authorEyad Masad
    contributor authorMabrouk Ouederni
    contributor authorOluwagbemi Banji Ibikunle
    date accessioned2022-05-07T20:11:36Z
    date available2022-05-07T20:11:36Z
    date issued2022-03-16
    identifier other(ASCE)MT.1943-5533.0004220.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282099
    description abstractThe main objective of this study is to explore the effects of various asphalt binder modifiers, including styrene–butadiene–styrene (SBS), elemental sulfur, reactive ethylene terpolymer (Elvaloy), and polyphosphoric acid (PPA) polymers on the nanostructural and nanomechanical (elastic and viscoelastic) properties of low-density polyethylene (LDPE)-modified binders. The study also aims to investigate the effect of aging on the nanoproperties of such blends. To this end, we used the PeakForce quantitative nanomechanical mapping (PFQNM) test and the nanoscale dynamic mechanical analysis (nDMA) test by means of atomic force microscopy. We further utilized the nanoscale results to better understand and interpret the bulk scale properties obtained using the dynamic shear rheometer (DSR). The nDMA results indicated an increase in stiffness and an enhancement in the elastic behavior of the blends after modification. Moreover, the blends exhibited a stiffer and more elastic behavior at the nanoscale when compared with the bulk DSR test results. Using Elvaloy and Elvaloy+PPA greatly enhanced the bond between LDPE and the binder. Both blends also showed resistance to heat-induced polymer separation and aging. Furthermore, the addition of SBS+sulfur enhanced LDPE dispersion within the binder. It was demonstrated that the use of elemental sulfur showed high efficacy in stabilizing LDPE-modified binders by inducing physical interaction between LDPE and the binder. Lastly, we concluded that the nanoscale measurements are very useful in understanding the local interactions, explaining the main aspects of the response at the bulk scale, and in the design of asphalt blends with improved properties.
    publisherASCE
    titleNanostructural and Nanomechanical Properties of LDPE-Modified Binders
    typeJournal Paper
    journal volume34
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004220
    journal fristpage04022081
    journal lastpage04022081-14
    page14
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian