YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High-Temperature Performance of Low-Calcium Fly Ash–Based Geopolymers

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 005::page 04022040
    Author:
    Mude Hanumananaik
    ,
    Mittapalli Sanath Kumar Reddy
    ,
    Kolluru V. L. Subramaniam
    DOI: 10.1061/(ASCE)MT.1943-5533.0004181
    Publisher: ASCE
    Abstract: The high-temperature behavior of alkali-activated fly ash (AAF) geopolymers is evaluated. The physical and phase changes in the material are determined to be a function of temperature of exposure. Thermal diffusivity and compressive strength are determined to be a function of temperature. The compressive strength after high-temperature exposure is related to the phase composition changes in the sodium aluminosilicate hydrate (NASH) gel and the porosity in the AAF. Exposure to 200°C produces an increase in the NASH gel content by up to 5% and a reduction in mass due to moisture loss. The physical damage in the material on heating up to 200°C is produced by vapor pressure generated inside the material, and it results in the creation of porosity in the 100-nm range. The level of damage is higher in AAF with a lower water content because of its finer pore structure. Up to 200°C, the combined influence of additional geopolymerization and physical damage produces an increase in strength in AAF with a higher water content and a decrease in strength at lower water content. There is an increase in the thermal diffusivity with moisture loss in geopolymer pastes with high water content. There is a consistent loss of strength in the range of 25–30 MPa between 200°C and 600°C, which is produced by changes in the NASH gel. There is a reduction in the content and changes produced by silica enrichment and dehydroxylation of the NASH gel between 200°C and 600°C. There is a strength gain of 3–6 MPa between 600°C and 1,000°C, which is produced by the conversion of the amorphous NASH gel to a more crystalline form. There are no additional changes in the porosity and thermal diffusivity at temperatures higher than 200°C. The results are significant for the fire design of concrete made with geopolymers.
    • Download: (1.764Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High-Temperature Performance of Low-Calcium Fly Ash–Based Geopolymers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282056
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMude Hanumananaik
    contributor authorMittapalli Sanath Kumar Reddy
    contributor authorKolluru V. L. Subramaniam
    date accessioned2022-05-07T20:09:22Z
    date available2022-05-07T20:09:22Z
    date issued2022-02-16
    identifier other(ASCE)MT.1943-5533.0004181.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282056
    description abstractThe high-temperature behavior of alkali-activated fly ash (AAF) geopolymers is evaluated. The physical and phase changes in the material are determined to be a function of temperature of exposure. Thermal diffusivity and compressive strength are determined to be a function of temperature. The compressive strength after high-temperature exposure is related to the phase composition changes in the sodium aluminosilicate hydrate (NASH) gel and the porosity in the AAF. Exposure to 200°C produces an increase in the NASH gel content by up to 5% and a reduction in mass due to moisture loss. The physical damage in the material on heating up to 200°C is produced by vapor pressure generated inside the material, and it results in the creation of porosity in the 100-nm range. The level of damage is higher in AAF with a lower water content because of its finer pore structure. Up to 200°C, the combined influence of additional geopolymerization and physical damage produces an increase in strength in AAF with a higher water content and a decrease in strength at lower water content. There is an increase in the thermal diffusivity with moisture loss in geopolymer pastes with high water content. There is a consistent loss of strength in the range of 25–30 MPa between 200°C and 600°C, which is produced by changes in the NASH gel. There is a reduction in the content and changes produced by silica enrichment and dehydroxylation of the NASH gel between 200°C and 600°C. There is a strength gain of 3–6 MPa between 600°C and 1,000°C, which is produced by the conversion of the amorphous NASH gel to a more crystalline form. There are no additional changes in the porosity and thermal diffusivity at temperatures higher than 200°C. The results are significant for the fire design of concrete made with geopolymers.
    publisherASCE
    titleHigh-Temperature Performance of Low-Calcium Fly Ash–Based Geopolymers
    typeJournal Paper
    journal volume34
    journal issue5
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004181
    journal fristpage04022040
    journal lastpage04022040-12
    page12
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian