YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Enhancement and Remediation of Microcracks in Cement Mortar by Doping Calcite-Precipitating Microorganisms

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004::page 04022035
    Author:
    Prabhath Ranjan Kumar Soda
    ,
    Mini K. M.
    DOI: 10.1061/(ASCE)MT.1943-5533.0004176
    Publisher: ASCE
    Abstract: Concrete is prone to microcracks owing to its brittle nature and durability-related issues when subjected to loading and various environmental conditions. This necessitates the need for an effective crack-healing method combined with reliable techniques to monitor the healing. This paper reports experiments conducted on endospore-forming alkaliphilic calcite-precipitating bacterium Bacillus megaterium MTCC 8510 and its efficacy at enhancing the performance and crack remediation in cement mortar. The capacity and the presence of calcite precipitation were confirmed using X-ray diffraction and field emission scanning electron microscopy. The effects of the direct addition of bacteria to cement mortar on its compressive strength, chloride diffusivity, and water permeability were observed. Apart from the direct addition of bacteria, the crack-healing capacity was also observed by spraying the bacterial solution directly on the cracks every day on a coir-reinforced cement mortar specimen. The results of the compressive strength test, rapid chloride penetration test (RCPT), and water permeability tests showed improved strength, reduced chloride diffusivity, and diminished water permeability with bacteria directly added cement mortar specimens. The healing of cracks inside the mortar specimens was confirmed by ultrasonic pulse velocity testing. The crack area was found using ImageJ software, which showed 94.73% healing in the surface crack area by direct spraying on the surface. It was found that the bacterial strain selected was efficient in terms of improving the performance characteristics and healing of microcracks.
    • Download: (3.858Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Enhancement and Remediation of Microcracks in Cement Mortar by Doping Calcite-Precipitating Microorganisms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282051
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorPrabhath Ranjan Kumar Soda
    contributor authorMini K. M.
    date accessioned2022-05-07T20:09:07Z
    date available2022-05-07T20:09:07Z
    date issued2022-01-28
    identifier other(ASCE)MT.1943-5533.0004176.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282051
    description abstractConcrete is prone to microcracks owing to its brittle nature and durability-related issues when subjected to loading and various environmental conditions. This necessitates the need for an effective crack-healing method combined with reliable techniques to monitor the healing. This paper reports experiments conducted on endospore-forming alkaliphilic calcite-precipitating bacterium Bacillus megaterium MTCC 8510 and its efficacy at enhancing the performance and crack remediation in cement mortar. The capacity and the presence of calcite precipitation were confirmed using X-ray diffraction and field emission scanning electron microscopy. The effects of the direct addition of bacteria to cement mortar on its compressive strength, chloride diffusivity, and water permeability were observed. Apart from the direct addition of bacteria, the crack-healing capacity was also observed by spraying the bacterial solution directly on the cracks every day on a coir-reinforced cement mortar specimen. The results of the compressive strength test, rapid chloride penetration test (RCPT), and water permeability tests showed improved strength, reduced chloride diffusivity, and diminished water permeability with bacteria directly added cement mortar specimens. The healing of cracks inside the mortar specimens was confirmed by ultrasonic pulse velocity testing. The crack area was found using ImageJ software, which showed 94.73% healing in the surface crack area by direct spraying on the surface. It was found that the bacterial strain selected was efficient in terms of improving the performance characteristics and healing of microcracks.
    publisherASCE
    titlePerformance Enhancement and Remediation of Microcracks in Cement Mortar by Doping Calcite-Precipitating Microorganisms
    typeJournal Paper
    journal volume34
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004176
    journal fristpage04022035
    journal lastpage04022035-13
    page13
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian