YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sustainable Development and Performance Assessment of Clay-Based Geopolymer Bricks Incorporating Fly Ash and Sugarcane Bagasse Ash

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004::page 04022036
    Author:
    Noor Yaseen
    ,
    Muhammad Irfan-ul-Hassan
    ,
    Abaid-ur-Rehman Saeed
    ,
    Syed. Ali Rizwan
    ,
    Muhammad Afzal
    DOI: 10.1061/(ASCE)MT.1943-5533.0004159
    Publisher: ASCE
    Abstract: Emission of carbon dioxide (CO2) either from the firing of clay bricks or from cement production, contributes considerably toward global warming. Conversely, the production of bricks is inevitable since a large number of bricks are needed to fulfill the housing sector demand. In this study, silty clay-based geopolymer bricks were produced incorporating fly ash and sugarcane bagasse ash. This was accomplished in two stages: the laboratory phase that comprised of production of cylindrical specimens, and the industrial phase whereby full-size bricks were produced based on the results obtained in the laboratory phase. The silty clay-based geopolymer bricks were developed with lesser energy input, i.e., forming pressure of 7 MPa with curing at ambient temperature. The whole set of mechanical and durability properties of the newly developed geopolymer brick yielded satisfactory results conforming to the standard codes. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results revealed the coexistence of sodium aluminosilicate gel (N─ A─ S─ H) and calcium aluminosilicate hydrate (C─ A─ S─ H), which led to a dense microstructure resulting in increased mechanical strength and ensuring enhanced durability of the brick structure. The environmental impact assessment confirmed the ecofriendly utilization of sugarcane bagasse ash in combination with fly ash in clay-based geopolymer bricks. The newly developed geopolymer can have a broad range of applications, including wall panel making, jet grouting, deep mixing, mortar for masonry constructions, canal lining, and grouting material used in backfill grouting during shield tunneling.
    • Download: (3.678Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sustainable Development and Performance Assessment of Clay-Based Geopolymer Bricks Incorporating Fly Ash and Sugarcane Bagasse Ash

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282036
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorNoor Yaseen
    contributor authorMuhammad Irfan-ul-Hassan
    contributor authorAbaid-ur-Rehman Saeed
    contributor authorSyed. Ali Rizwan
    contributor authorMuhammad Afzal
    date accessioned2022-05-07T20:08:27Z
    date available2022-05-07T20:08:27Z
    date issued2022-01-28
    identifier other(ASCE)MT.1943-5533.0004159.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282036
    description abstractEmission of carbon dioxide (CO2) either from the firing of clay bricks or from cement production, contributes considerably toward global warming. Conversely, the production of bricks is inevitable since a large number of bricks are needed to fulfill the housing sector demand. In this study, silty clay-based geopolymer bricks were produced incorporating fly ash and sugarcane bagasse ash. This was accomplished in two stages: the laboratory phase that comprised of production of cylindrical specimens, and the industrial phase whereby full-size bricks were produced based on the results obtained in the laboratory phase. The silty clay-based geopolymer bricks were developed with lesser energy input, i.e., forming pressure of 7 MPa with curing at ambient temperature. The whole set of mechanical and durability properties of the newly developed geopolymer brick yielded satisfactory results conforming to the standard codes. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results revealed the coexistence of sodium aluminosilicate gel (N─ A─ S─ H) and calcium aluminosilicate hydrate (C─ A─ S─ H), which led to a dense microstructure resulting in increased mechanical strength and ensuring enhanced durability of the brick structure. The environmental impact assessment confirmed the ecofriendly utilization of sugarcane bagasse ash in combination with fly ash in clay-based geopolymer bricks. The newly developed geopolymer can have a broad range of applications, including wall panel making, jet grouting, deep mixing, mortar for masonry constructions, canal lining, and grouting material used in backfill grouting during shield tunneling.
    publisherASCE
    titleSustainable Development and Performance Assessment of Clay-Based Geopolymer Bricks Incorporating Fly Ash and Sugarcane Bagasse Ash
    typeJournal Paper
    journal volume34
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004159
    journal fristpage04022036
    journal lastpage04022036-16
    page16
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian