YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Initial Void Shape on Void Growth of Structural Steels Based on Micromechanical RVE Models

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004::page 04022010
    Author:
    Jinbao Xie
    ,
    Rui Zhang
    ,
    Tao Liu
    ,
    Changfeng Zhou
    ,
    Liang-Jiu Jia
    DOI: 10.1061/(ASCE)MT.1943-5533.0004150
    Publisher: ASCE
    Abstract: This paper aims to study the effect of initial void shape on void growth of structural steels, which is a critical stage for ductile fracture of steel. Typical void shapes of structural steels were characterized by an in situ high-resolution micro X-ray computed tomography (μXCT) technique, including spherical, elliptical, and cylindrical voids. Then, a micromechanical representative volume element (RVE) model containing a single void was established with periodic boundary conditions. On this basis, impacts of the void shape on void growth were analyzed through Python-based parametric modeling in ABAQUS with respect to the stress triaxiality, aspect ratio, orientation, and initial void volume fraction, respectively. The results indicate a significant effect of the void shape on void growth under low stress triaxialities, and the effect tends to decrease with the increase of the stress triaxiality. Under low stress triaxialities (e.g., 0.33), there is a remarkable void growth difference between cylindrical and elliptical voids with the same initial aspect ratio, and this difference tends to disappear when the stress triaxiality increases to a high value, e.g., 0.8. Compared with the void orientation aligned in a coordinate axis, the off-axis one presents a smaller void growth difference induced by the void shape when the stress triaxiality is low, but reverse under high stress triaxialities. Finally, accurate and simplified formulas were proposed to consider the effects of void shape on void growth at the mesoscale.
    • Download: (7.853Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Initial Void Shape on Void Growth of Structural Steels Based on Micromechanical RVE Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282025
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJinbao Xie
    contributor authorRui Zhang
    contributor authorTao Liu
    contributor authorChangfeng Zhou
    contributor authorLiang-Jiu Jia
    date accessioned2022-05-07T20:08:00Z
    date available2022-05-07T20:08:00Z
    date issued2022-01-19
    identifier other(ASCE)MT.1943-5533.0004150.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282025
    description abstractThis paper aims to study the effect of initial void shape on void growth of structural steels, which is a critical stage for ductile fracture of steel. Typical void shapes of structural steels were characterized by an in situ high-resolution micro X-ray computed tomography (μXCT) technique, including spherical, elliptical, and cylindrical voids. Then, a micromechanical representative volume element (RVE) model containing a single void was established with periodic boundary conditions. On this basis, impacts of the void shape on void growth were analyzed through Python-based parametric modeling in ABAQUS with respect to the stress triaxiality, aspect ratio, orientation, and initial void volume fraction, respectively. The results indicate a significant effect of the void shape on void growth under low stress triaxialities, and the effect tends to decrease with the increase of the stress triaxiality. Under low stress triaxialities (e.g., 0.33), there is a remarkable void growth difference between cylindrical and elliptical voids with the same initial aspect ratio, and this difference tends to disappear when the stress triaxiality increases to a high value, e.g., 0.8. Compared with the void orientation aligned in a coordinate axis, the off-axis one presents a smaller void growth difference induced by the void shape when the stress triaxiality is low, but reverse under high stress triaxialities. Finally, accurate and simplified formulas were proposed to consider the effects of void shape on void growth at the mesoscale.
    publisherASCE
    titleEffect of Initial Void Shape on Void Growth of Structural Steels Based on Micromechanical RVE Models
    typeJournal Paper
    journal volume34
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004150
    journal fristpage04022010
    journal lastpage04022010-17
    page17
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian