YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multilayer Microstructure Characterization of the Interfacial Transition Zone between Polymer-Modified Magnesium Phosphate Cement and Portland Cement

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004::page 04022004
    Author:
    Fei Liu
    ,
    Baofeng Pan
    ,
    Changjun Zhou
    DOI: 10.1061/(ASCE)MT.1943-5533.0004137
    Publisher: ASCE
    Abstract: Magnesium phosphate cement (MPC) as a fast-setting material has been widely used in the rapid repair of cement concrete pavement. A decisive role was played in the bonding performance of the repair interface between MPC and portland cement concrete (PCC) except for the high early strength and good durability of MPC. Premising the MPC as the rapid repair material for PCC, the characterization and analysis of the interface performance are studied. The data of elastic modulus for the interfacial transition zone (ITZ) is measured by nanoindentation technology while the mechanical properties firstly. The heterogeneity and stratification in the ITZ were characterized by the combination of Raman spectroscopy and nanoindentation test. The content of each material composition was explored with scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) experiment and X-ray diffraction (XRD) analysis. Additionally, the adhesion-like substances in the cracks, observed by SEM images in the ITZ, inferred a certain self-healing ability of the polymer-modified magnesium phosphate cement (PMPC). Finally, the elastic modulus of ITZ was simulated by DIGIMAT version 2019.1 software, indicating that the single-layer microstructure analysis is feasible for obtaining elastic modulus of the ITZ without hydration stratification, while the multilayer microstructure analysis is necessary for obtaining elastic modulus of the ITZ with the hydration stratification.
    • Download: (3.147Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multilayer Microstructure Characterization of the Interfacial Transition Zone between Polymer-Modified Magnesium Phosphate Cement and Portland Cement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282011
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorFei Liu
    contributor authorBaofeng Pan
    contributor authorChangjun Zhou
    date accessioned2022-05-07T20:07:16Z
    date available2022-05-07T20:07:16Z
    date issued2022-01-18
    identifier other(ASCE)MT.1943-5533.0004137.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282011
    description abstractMagnesium phosphate cement (MPC) as a fast-setting material has been widely used in the rapid repair of cement concrete pavement. A decisive role was played in the bonding performance of the repair interface between MPC and portland cement concrete (PCC) except for the high early strength and good durability of MPC. Premising the MPC as the rapid repair material for PCC, the characterization and analysis of the interface performance are studied. The data of elastic modulus for the interfacial transition zone (ITZ) is measured by nanoindentation technology while the mechanical properties firstly. The heterogeneity and stratification in the ITZ were characterized by the combination of Raman spectroscopy and nanoindentation test. The content of each material composition was explored with scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) experiment and X-ray diffraction (XRD) analysis. Additionally, the adhesion-like substances in the cracks, observed by SEM images in the ITZ, inferred a certain self-healing ability of the polymer-modified magnesium phosphate cement (PMPC). Finally, the elastic modulus of ITZ was simulated by DIGIMAT version 2019.1 software, indicating that the single-layer microstructure analysis is feasible for obtaining elastic modulus of the ITZ without hydration stratification, while the multilayer microstructure analysis is necessary for obtaining elastic modulus of the ITZ with the hydration stratification.
    publisherASCE
    titleMultilayer Microstructure Characterization of the Interfacial Transition Zone between Polymer-Modified Magnesium Phosphate Cement and Portland Cement
    typeJournal Paper
    journal volume34
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004137
    journal fristpage04022004
    journal lastpage04022004-12
    page12
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian