YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Optimum Fiber Length in Fiber-Reinforced Asphalt Concrete

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 003::page 04021494
    Author:
    Hossein Noorvand
    ,
    Michael Mamlouk
    ,
    Kamil Kaloush
    DOI: 10.1061/(ASCE)MT.1943-5533.0004128
    Publisher: ASCE
    Abstract: Cracking is one of the most common distresses in asphalt pavement. Because asphalt concrete is relatively weak in tension, synthetic fibers have shown to increase its tensile strength and, therefore, reduce the chance of cracking. An approach was used in this study with the aim of evaluating the interaction between fibers and asphalt mastic and the fiber distribution in asphalt concrete. Three types of aramid fibers and two types of nylon fibers were used. A pullout test was used to determine the typical shear bond strength between fibers and the asphalt mastic. The bond strength obtained from the pullout test was then used to calculate the minimum fiber embedded length on each side of the crack in order for the fiber to reach its full capacity before being pulled out. Of course, increasing fiber length increases the chance of bridging cracks considering the random distribution of fibers in fiber-reinforced asphalt concrete (FRAC) and the random orientation of fibers relative to cracks. On the other hand, increasing fiber length may result in uneven distribution of fibers in the FRAC. Fiber extraction and recovery tests were then used to determine the dispersion of aramid fibers in the FRAC with different fiber lengths. The study showed that aramid fibers in the order of 20 mm would provide a good bond with the asphalt mastic and result in reasonable dispersion in the FRAC. The uniaxial fatigue test and flow number test were also performed on FRAC with different aramid fiber lengths. The 19-mm fibers also showed better performance test results than the 10- and 38-mm fibers. A similar length is recommended for the Nylon 1 fibers based on the bond properties only. Longer Nylon 2 fibers are recommended, but caution needs to be taken to avoid uneven fiber dispersion in the FRAC.
    • Download: (3.356Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Optimum Fiber Length in Fiber-Reinforced Asphalt Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4282002
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorHossein Noorvand
    contributor authorMichael Mamlouk
    contributor authorKamil Kaloush
    date accessioned2022-05-07T20:06:52Z
    date available2022-05-07T20:06:52Z
    date issued2021-12-31
    identifier other(ASCE)MT.1943-5533.0004128.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4282002
    description abstractCracking is one of the most common distresses in asphalt pavement. Because asphalt concrete is relatively weak in tension, synthetic fibers have shown to increase its tensile strength and, therefore, reduce the chance of cracking. An approach was used in this study with the aim of evaluating the interaction between fibers and asphalt mastic and the fiber distribution in asphalt concrete. Three types of aramid fibers and two types of nylon fibers were used. A pullout test was used to determine the typical shear bond strength between fibers and the asphalt mastic. The bond strength obtained from the pullout test was then used to calculate the minimum fiber embedded length on each side of the crack in order for the fiber to reach its full capacity before being pulled out. Of course, increasing fiber length increases the chance of bridging cracks considering the random distribution of fibers in fiber-reinforced asphalt concrete (FRAC) and the random orientation of fibers relative to cracks. On the other hand, increasing fiber length may result in uneven distribution of fibers in the FRAC. Fiber extraction and recovery tests were then used to determine the dispersion of aramid fibers in the FRAC with different fiber lengths. The study showed that aramid fibers in the order of 20 mm would provide a good bond with the asphalt mastic and result in reasonable dispersion in the FRAC. The uniaxial fatigue test and flow number test were also performed on FRAC with different aramid fiber lengths. The 19-mm fibers also showed better performance test results than the 10- and 38-mm fibers. A similar length is recommended for the Nylon 1 fibers based on the bond properties only. Longer Nylon 2 fibers are recommended, but caution needs to be taken to avoid uneven fiber dispersion in the FRAC.
    publisherASCE
    titleEvaluation of Optimum Fiber Length in Fiber-Reinforced Asphalt Concrete
    typeJournal Paper
    journal volume34
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004128
    journal fristpage04021494
    journal lastpage04021494-12
    page12
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian