YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Asserting the Applicability of Copper Slag and Fly Ash as Cemented Base Materials in Flexible Pavement from a Full-Scale Field Study

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004::page 04022001
    Author:
    R. R. Pai
    ,
    M. D. Bakare
    ,
    S. Patel
    ,
    J. T. Shahu
    DOI: 10.1061/(ASCE)MT.1943-5533.0004123
    Publisher: ASCE
    Abstract: This research made innovative use of copper slag and fly ash in the construction of a cemented base course of flexible pavement. A full-scale field study evaluated the structural and functional performance of flexible pavement test sections constructed using various combinations of copper slag and fly ash (Class F or Class C) with and without lime. Various performance parameters, namely deflection basin parameters, dissipated energy, back-calculated elastic modulus, service life ratio, and roughness index, were evaluated for flexible pavement test sections constructed with 250-mm-thick conventional granular base [wet-mix macadam (WMM)], 150-mm- and 250-mm-thick copper slag–Class F fly ash–lime (CFL) (70% copper slag +23% Class F fly ash +7% lime) and copper slag–Class C fly ash (CCF) (40% copper slag +60% Class C fly ash) base layers. Falling weight deflectometer tests and bump integrator tests were performed in situ; laboratory tests, namely unconfined compression and resilient modulus tests, were performed on core samples. The average elastic moduli, back-calculated from six FWD tests conducted over 15 months after construction, for CCF and CFL base were 430 and 602 MPa, which are more than 3 times that of WMM. Significant waste utilization up to 1,348 tons of copper slag and 945 tons of fly ash per kilometer length of road can be achieved by using CCF and CFL mixes in base layers of flexible pavement with a service life ratio as high as 1.78 and cost efficiency of 17.4%.
    • Download: (2.398Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Asserting the Applicability of Copper Slag and Fly Ash as Cemented Base Materials in Flexible Pavement from a Full-Scale Field Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281997
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorR. R. Pai
    contributor authorM. D. Bakare
    contributor authorS. Patel
    contributor authorJ. T. Shahu
    date accessioned2022-05-07T20:06:41Z
    date available2022-05-07T20:06:41Z
    date issued2022-01-17
    identifier other(ASCE)MT.1943-5533.0004123.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281997
    description abstractThis research made innovative use of copper slag and fly ash in the construction of a cemented base course of flexible pavement. A full-scale field study evaluated the structural and functional performance of flexible pavement test sections constructed using various combinations of copper slag and fly ash (Class F or Class C) with and without lime. Various performance parameters, namely deflection basin parameters, dissipated energy, back-calculated elastic modulus, service life ratio, and roughness index, were evaluated for flexible pavement test sections constructed with 250-mm-thick conventional granular base [wet-mix macadam (WMM)], 150-mm- and 250-mm-thick copper slag–Class F fly ash–lime (CFL) (70% copper slag +23% Class F fly ash +7% lime) and copper slag–Class C fly ash (CCF) (40% copper slag +60% Class C fly ash) base layers. Falling weight deflectometer tests and bump integrator tests were performed in situ; laboratory tests, namely unconfined compression and resilient modulus tests, were performed on core samples. The average elastic moduli, back-calculated from six FWD tests conducted over 15 months after construction, for CCF and CFL base were 430 and 602 MPa, which are more than 3 times that of WMM. Significant waste utilization up to 1,348 tons of copper slag and 945 tons of fly ash per kilometer length of road can be achieved by using CCF and CFL mixes in base layers of flexible pavement with a service life ratio as high as 1.78 and cost efficiency of 17.4%.
    publisherASCE
    titleAsserting the Applicability of Copper Slag and Fly Ash as Cemented Base Materials in Flexible Pavement from a Full-Scale Field Study
    typeJournal Paper
    journal volume34
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004123
    journal fristpage04022001
    journal lastpage04022001-15
    page15
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian