YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diffusion Phenomenon between Two Different Bitumens from Mechanical Analysis

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 003::page 04021476
    Author:
    Stefano Noto
    ,
    Salvatore Mangiafico
    ,
    Cédric Sauzéat
    ,
    Hervé Di Benedetto
    ,
    Elena Romeo
    ,
    Gabriele Tebaldi
    DOI: 10.1061/(ASCE)MT.1943-5533.0004116
    Publisher: ASCE
    Abstract: The use of reclaimed asphalt pavement (RAP) in hot asphalt mixtures has been investigated widely, mainly to increase the amount of RAP incorporated into new asphalt mixtures as secondary material. A key point to successfully increase the amount of RAP in mixtures is a comprehensive understanding of the blending between different bitumens, such as old and fresh bitumen. This paper introduces a mechanical model to simulate the diffusion phenomenon between two different bitumens on the basis of their rheological properties. A double-layer dynamic shear rheometer (DSR) specimen with a 25 mm diameter and 0.5 mm total thickness in plate–plate configuration was prepared by superposing two 0.25-mm-thick layers, each composed of a different bitumen. The evolution over time of the equivalent shear complex modulus of the whole double-layer specimen was investigated by performing a series of frequency sweeps at 50°C every 30  min. The time-dependent evolution of the equivalent modulus was modeled by considering an intermediate layer, composed of fully blended bitumen, at the interface between the two layers of the two base bitumens. The thickness of the intermediate layer increased as a function of time, due to diffusion. The validity of the model was confirmed by a frequency-independent thickness of the intermediate layer. Extrapolating the results, the model gives an indication of the blending of the two bitumens in the long-term, and the findings may suggest an interaction between different bitumens in asphalt mixtures containing RAP. The results are promising for the development of a more-refined mechanical model.
    • Download: (2.368Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diffusion Phenomenon between Two Different Bitumens from Mechanical Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281989
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorStefano Noto
    contributor authorSalvatore Mangiafico
    contributor authorCédric Sauzéat
    contributor authorHervé Di Benedetto
    contributor authorElena Romeo
    contributor authorGabriele Tebaldi
    date accessioned2022-05-07T20:06:14Z
    date available2022-05-07T20:06:14Z
    date issued2021-12-23
    identifier other(ASCE)MT.1943-5533.0004116.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281989
    description abstractThe use of reclaimed asphalt pavement (RAP) in hot asphalt mixtures has been investigated widely, mainly to increase the amount of RAP incorporated into new asphalt mixtures as secondary material. A key point to successfully increase the amount of RAP in mixtures is a comprehensive understanding of the blending between different bitumens, such as old and fresh bitumen. This paper introduces a mechanical model to simulate the diffusion phenomenon between two different bitumens on the basis of their rheological properties. A double-layer dynamic shear rheometer (DSR) specimen with a 25 mm diameter and 0.5 mm total thickness in plate–plate configuration was prepared by superposing two 0.25-mm-thick layers, each composed of a different bitumen. The evolution over time of the equivalent shear complex modulus of the whole double-layer specimen was investigated by performing a series of frequency sweeps at 50°C every 30  min. The time-dependent evolution of the equivalent modulus was modeled by considering an intermediate layer, composed of fully blended bitumen, at the interface between the two layers of the two base bitumens. The thickness of the intermediate layer increased as a function of time, due to diffusion. The validity of the model was confirmed by a frequency-independent thickness of the intermediate layer. Extrapolating the results, the model gives an indication of the blending of the two bitumens in the long-term, and the findings may suggest an interaction between different bitumens in asphalt mixtures containing RAP. The results are promising for the development of a more-refined mechanical model.
    publisherASCE
    titleDiffusion Phenomenon between Two Different Bitumens from Mechanical Analysis
    typeJournal Paper
    journal volume34
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004116
    journal fristpage04021476
    journal lastpage04021476-10
    page10
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian