YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Introducing a Sustainable Bio-Based Polyurethane to Enhance the Healing Capacity of Bitumen

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 003::page 04021465
    Author:
    Mohammadjavad Kazemi
    ,
    Abbas Mohammadi
    ,
    Ahmad Goli
    ,
    Elham Fini
    DOI: 10.1061/(ASCE)MT.1943-5533.0004102
    Publisher: ASCE
    Abstract: This paper introduces the in-situ formation of biomodified polyurethane in bitumen as a novel strategy to enhance the healing capacity and aging resistance of bitumen. Bitumen is a substance that is known to have the capacity for healing. Self-healing bituminous composites can recover their properties. An increase in bitumen’s healing capacity can be facilitated using various modifiers. This study examined the merits of using a biobased polyurethane to both improve the healing capacity of bitumen and to enhance its resistance to aging through in-situ polymerization of polyurethane. The effect of aging on healing capacity was examined by studying specimens before and after aging in the laboratory. To do so, thermomechanical analysis and spectroscopy were used to characterize bitumen containing a biobased polyurethane from castor oil. It was found that the biobased polyurethane was quite compatible with bitumen, and the presence of polyurethane improved the overall thermomechanical properties of the bitumen. To evaluate the extent of healing, a time-sweep rheometry test was used to create samples with specific initial damage degrees. The degree of damage was selected to be a 30%, 45%, or 60% reduction in complex modulus. A healing index was calculated for each of the three damage levels after a 60-min rest period. The study results showed that the introduction of biobased polyurethane not only improved the healing index, it also mitigated the negative effects of aging on bitumen’s healing capacity. Compared to samples of unmodified bitumen, the average healing index of samples containing biomodified polyurethane was 1.3 times higher at 16% in the unaged state and 3.5 times higher at 7% in the aged state. In addition, the samples containing biomodified polyurethane showed better resistance to aging as evidenced by average 72% and 50% lower increases, respectively, in carbonyl and sulfoxide (known products of aging in bitumen) when exposed to the same aging protocol.
    • Download: (4.469Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Introducing a Sustainable Bio-Based Polyurethane to Enhance the Healing Capacity of Bitumen

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281975
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMohammadjavad Kazemi
    contributor authorAbbas Mohammadi
    contributor authorAhmad Goli
    contributor authorElham Fini
    date accessioned2022-05-07T20:05:21Z
    date available2022-05-07T20:05:21Z
    date issued2021-12-21
    identifier other(ASCE)MT.1943-5533.0004102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281975
    description abstractThis paper introduces the in-situ formation of biomodified polyurethane in bitumen as a novel strategy to enhance the healing capacity and aging resistance of bitumen. Bitumen is a substance that is known to have the capacity for healing. Self-healing bituminous composites can recover their properties. An increase in bitumen’s healing capacity can be facilitated using various modifiers. This study examined the merits of using a biobased polyurethane to both improve the healing capacity of bitumen and to enhance its resistance to aging through in-situ polymerization of polyurethane. The effect of aging on healing capacity was examined by studying specimens before and after aging in the laboratory. To do so, thermomechanical analysis and spectroscopy were used to characterize bitumen containing a biobased polyurethane from castor oil. It was found that the biobased polyurethane was quite compatible with bitumen, and the presence of polyurethane improved the overall thermomechanical properties of the bitumen. To evaluate the extent of healing, a time-sweep rheometry test was used to create samples with specific initial damage degrees. The degree of damage was selected to be a 30%, 45%, or 60% reduction in complex modulus. A healing index was calculated for each of the three damage levels after a 60-min rest period. The study results showed that the introduction of biobased polyurethane not only improved the healing index, it also mitigated the negative effects of aging on bitumen’s healing capacity. Compared to samples of unmodified bitumen, the average healing index of samples containing biomodified polyurethane was 1.3 times higher at 16% in the unaged state and 3.5 times higher at 7% in the aged state. In addition, the samples containing biomodified polyurethane showed better resistance to aging as evidenced by average 72% and 50% lower increases, respectively, in carbonyl and sulfoxide (known products of aging in bitumen) when exposed to the same aging protocol.
    publisherASCE
    titleIntroducing a Sustainable Bio-Based Polyurethane to Enhance the Healing Capacity of Bitumen
    typeJournal Paper
    journal volume34
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004102
    journal fristpage04021465
    journal lastpage04021465-12
    page12
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian