YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of Two-Phase Diffusion Model Consisting of Free and Bound Water Molecules for Water Vapor Diffusing into Asphalt Mixtures

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 002::page 04021450
    Author:
    Tingting Huang
    ,
    Rong Luo
    DOI: 10.1061/(ASCE)MT.1943-5533.0004095
    Publisher: ASCE
    Abstract: Water vapor diffusing inside asphalt mixtures is one of the most important ways for water molecules accessing asphalt mixtures to trigger moisture damage. Several diffusion models have been constructed to describe the water vapor diffusion in asphalt mixtures based on Fick’s second law, with the assumption that all water molecules are free. However, when water vapor diffuses in asphalt mixtures, there exists free and bound water molecules simultaneously. Most of the current diffusion models ignore the bound phase of water molecules during the diffusion process. This study developed a three-dimensional (3D) two-phase diffusion model in cylindrical coordinates. Fick’s second law was used to describe the free phase of water molecules, and the relationship between free and bound water molecules was formulated to establish the model. The accumulative water vapor diffusion test was conducted on two types of asphalt mixtures at three relative humidity (RH) levels (17.17%, 51.51%, and 90.14%) at 20°C using the gravimetric sorption analyzer (GSA). The initial RH of the test specimens was set to 0% by evacuating the specimens, and then a steady level of water vapor pressure was applied to achieve the specific RH. The mass of diffused water vapor in the specimens was weighed every 5 s by the magnetic suspension balance of GSA. The raw data, consisting of diffused mass of water vapor versus diffusing time, were obtained. The developed 3D two-phase diffusion model with the first 36 terms was used to fit the diffusion data. Four model parameters—diffusivity of water vapor in asphalt mixtures (D), maximum mass of diffused water vapor [M(∞)], probability of free water molecules becoming bound (y), and probability of bound water molecules becoming free (β)—were determined after model fitting. Furthermore, the maximum mass of bound water molecules [M1(∞)] and the maximum mass of free water molecules [M2(∞)] could be calculated after determination of these model parameters.
    • Download: (908.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of Two-Phase Diffusion Model Consisting of Free and Bound Water Molecules for Water Vapor Diffusing into Asphalt Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281967
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorTingting Huang
    contributor authorRong Luo
    date accessioned2022-05-07T20:04:54Z
    date available2022-05-07T20:04:54Z
    date issued2021-11-26
    identifier other(ASCE)MT.1943-5533.0004095.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281967
    description abstractWater vapor diffusing inside asphalt mixtures is one of the most important ways for water molecules accessing asphalt mixtures to trigger moisture damage. Several diffusion models have been constructed to describe the water vapor diffusion in asphalt mixtures based on Fick’s second law, with the assumption that all water molecules are free. However, when water vapor diffuses in asphalt mixtures, there exists free and bound water molecules simultaneously. Most of the current diffusion models ignore the bound phase of water molecules during the diffusion process. This study developed a three-dimensional (3D) two-phase diffusion model in cylindrical coordinates. Fick’s second law was used to describe the free phase of water molecules, and the relationship between free and bound water molecules was formulated to establish the model. The accumulative water vapor diffusion test was conducted on two types of asphalt mixtures at three relative humidity (RH) levels (17.17%, 51.51%, and 90.14%) at 20°C using the gravimetric sorption analyzer (GSA). The initial RH of the test specimens was set to 0% by evacuating the specimens, and then a steady level of water vapor pressure was applied to achieve the specific RH. The mass of diffused water vapor in the specimens was weighed every 5 s by the magnetic suspension balance of GSA. The raw data, consisting of diffused mass of water vapor versus diffusing time, were obtained. The developed 3D two-phase diffusion model with the first 36 terms was used to fit the diffusion data. Four model parameters—diffusivity of water vapor in asphalt mixtures (D), maximum mass of diffused water vapor [M(∞)], probability of free water molecules becoming bound (y), and probability of bound water molecules becoming free (β)—were determined after model fitting. Furthermore, the maximum mass of bound water molecules [M1(∞)] and the maximum mass of free water molecules [M2(∞)] could be calculated after determination of these model parameters.
    publisherASCE
    titleDevelopment of Two-Phase Diffusion Model Consisting of Free and Bound Water Molecules for Water Vapor Diffusing into Asphalt Mixtures
    typeJournal Paper
    journal volume34
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004095
    journal fristpage04021450
    journal lastpage04021450-13
    page13
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian