YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Behavior and Permeability of Plastic Concrete Containing Natural Zeolite under Triaxial and Uniaxial Compression

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 002::page 04021453
    Author:
    Ali Akbarpour
    ,
    Mahdi Mahdikhani
    ,
    Reza Ziaie Moayed
    DOI: 10.1061/(ASCE)MT.1943-5533.0004093
    Publisher: ASCE
    Abstract: This paper represents a series of laboratory tests to illustrate the effects of natural zeolite and sulfate environment on the mechanical behavior, hydraulic properties, and microstructure of plastic concrete. Plastic concrete (Pl-C) is comprised of cement, water, aggregate, and bentonite. Because cement production is responsible for a significant amount of carbon dioxide emissions into the atmosphere, cement was replaced in five different percentages of 0%, 10%, 15%, 20%, and 25% by natural zeolite (Z). Moreover, all the specimens were cured in chambers simulating sulfate attack. The mechanical behavior of plastic concrete containing natural zeolite (Pl-CZ) was studied using a series of confined and unconfined compression tests. Hydraulic properties were evaluated using three different confining pressures of 200, 350, and 500 kPa. Scanning electron microscopy (SEM) images were utilized to explore the microstructure of Pl-CZ specimens. The test results show that, although increasing the zeolite content decreased the unconfined strength, peak strength, and the elastic modulus in the early ages, at the later ages, it increased the unconfined strength as well as the peak strength and the elastic modulus, while it decreased the permeability. As illustrated in SEM images, specimens cured in the sulfate environment indicated lower porosity which led to having higher unconfined strength, elastic modulus, and peak strength, along with lower permeability.
    • Download: (3.188Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Behavior and Permeability of Plastic Concrete Containing Natural Zeolite under Triaxial and Uniaxial Compression

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281965
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorAli Akbarpour
    contributor authorMahdi Mahdikhani
    contributor authorReza Ziaie Moayed
    date accessioned2022-05-07T20:04:51Z
    date available2022-05-07T20:04:51Z
    date issued2021-11-26
    identifier other(ASCE)MT.1943-5533.0004093.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281965
    description abstractThis paper represents a series of laboratory tests to illustrate the effects of natural zeolite and sulfate environment on the mechanical behavior, hydraulic properties, and microstructure of plastic concrete. Plastic concrete (Pl-C) is comprised of cement, water, aggregate, and bentonite. Because cement production is responsible for a significant amount of carbon dioxide emissions into the atmosphere, cement was replaced in five different percentages of 0%, 10%, 15%, 20%, and 25% by natural zeolite (Z). Moreover, all the specimens were cured in chambers simulating sulfate attack. The mechanical behavior of plastic concrete containing natural zeolite (Pl-CZ) was studied using a series of confined and unconfined compression tests. Hydraulic properties were evaluated using three different confining pressures of 200, 350, and 500 kPa. Scanning electron microscopy (SEM) images were utilized to explore the microstructure of Pl-CZ specimens. The test results show that, although increasing the zeolite content decreased the unconfined strength, peak strength, and the elastic modulus in the early ages, at the later ages, it increased the unconfined strength as well as the peak strength and the elastic modulus, while it decreased the permeability. As illustrated in SEM images, specimens cured in the sulfate environment indicated lower porosity which led to having higher unconfined strength, elastic modulus, and peak strength, along with lower permeability.
    publisherASCE
    titleMechanical Behavior and Permeability of Plastic Concrete Containing Natural Zeolite under Triaxial and Uniaxial Compression
    typeJournal Paper
    journal volume34
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004093
    journal fristpage04021453
    journal lastpage04021453-10
    page10
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian