YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on Properties of Magnesium Phosphate Cement–Based Self-Compacting Concrete with High-Early Strength

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 002::page 04021435
    Author:
    Jing Zhang
    ,
    Xiamin Hu
    ,
    Wei Shao
    ,
    Yun Mook Lim
    ,
    Zeyu Chen
    ,
    Wenwen Zhu
    DOI: 10.1061/(ASCE)MT.1943-5533.0004075
    Publisher: ASCE
    Abstract: Recently, magnesium phosphate cement (MPC) has received extensive research attention due to its fast construction, excellent bonding performance, and eco-friendly environment. Thus, some scholars believe that MPC is a promising candidate for the partial replacement of ordinary portland cement in construction engineering. However, most of the existing studies and applications of MPC mainly focused on the properties of cement materials and small construction applications, such as rapid repair and strengthening engineering, while the properties of MPC-based concrete were seldom reported. Moreover, there are still some problems that need to be solved, such as high raw material cost, short setting time, and concrete casting. In general, this greatly limits the mass construction application of MPC. This study discussed a new type of MPC-based self-compacting concrete with high early strength using mineral admixtures and composite retarders. Twenty-one mix proportions of MPC-based concrete were mixed with investigating the effect of aggregate cement ratios (A/c), mass ratios of fine aggregate to coarse aggregate (ms:mg), MgO purity and fineness, the water-cement ratio (w/c), and glacial acetic acid (GAC) content and mineral admixtures content on the fluidity, setting time, reaction temperature, and cubic compressive strength (CCS) at different curing ages (1, 3, 7, and 28 days), including a total of 252 concrete specimens, and the optimum mix proportion was also given. Finally, the CCS and setting time of the specimens were compared with those of the open literature, and a 4-m long full-scale beam was cast to verify the feasibility of MPC-based concrete in the actual mass pouring. The results indicated that the mix proportion with an MgO purity of 98 and average particle size of 125  μm had the highest late strength, higher early strength, longer setting time, and better self-compacting and workability under A/c=1.3, ms:mg=1∶5, and w/c=0.12, and a mineral admixtures content of 10% FA and 10% MK can be applied to mass construction in practical engineering.
    • Download: (2.374Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on Properties of Magnesium Phosphate Cement–Based Self-Compacting Concrete with High-Early Strength

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281945
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJing Zhang
    contributor authorXiamin Hu
    contributor authorWei Shao
    contributor authorYun Mook Lim
    contributor authorZeyu Chen
    contributor authorWenwen Zhu
    date accessioned2022-05-07T20:03:47Z
    date available2022-05-07T20:03:47Z
    date issued2021-11-24
    identifier other(ASCE)MT.1943-5533.0004075.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281945
    description abstractRecently, magnesium phosphate cement (MPC) has received extensive research attention due to its fast construction, excellent bonding performance, and eco-friendly environment. Thus, some scholars believe that MPC is a promising candidate for the partial replacement of ordinary portland cement in construction engineering. However, most of the existing studies and applications of MPC mainly focused on the properties of cement materials and small construction applications, such as rapid repair and strengthening engineering, while the properties of MPC-based concrete were seldom reported. Moreover, there are still some problems that need to be solved, such as high raw material cost, short setting time, and concrete casting. In general, this greatly limits the mass construction application of MPC. This study discussed a new type of MPC-based self-compacting concrete with high early strength using mineral admixtures and composite retarders. Twenty-one mix proportions of MPC-based concrete were mixed with investigating the effect of aggregate cement ratios (A/c), mass ratios of fine aggregate to coarse aggregate (ms:mg), MgO purity and fineness, the water-cement ratio (w/c), and glacial acetic acid (GAC) content and mineral admixtures content on the fluidity, setting time, reaction temperature, and cubic compressive strength (CCS) at different curing ages (1, 3, 7, and 28 days), including a total of 252 concrete specimens, and the optimum mix proportion was also given. Finally, the CCS and setting time of the specimens were compared with those of the open literature, and a 4-m long full-scale beam was cast to verify the feasibility of MPC-based concrete in the actual mass pouring. The results indicated that the mix proportion with an MgO purity of 98 and average particle size of 125  μm had the highest late strength, higher early strength, longer setting time, and better self-compacting and workability under A/c=1.3, ms:mg=1∶5, and w/c=0.12, and a mineral admixtures content of 10% FA and 10% MK can be applied to mass construction in practical engineering.
    publisherASCE
    titleExperimental Study on Properties of Magnesium Phosphate Cement–Based Self-Compacting Concrete with High-Early Strength
    typeJournal Paper
    journal volume34
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004075
    journal fristpage04021435
    journal lastpage04021435-11
    page11
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian