YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Properties of Douglas Fir Wood at Elevated Temperatures under Nitrogen Conditions

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 002::page 04021434
    Author:
    Kong Yue
    ,
    Jinhao Wu
    ,
    Feng Wang
    ,
    Zhangjing Chen
    ,
    Weidong Lu
    DOI: 10.1061/(ASCE)MT.1943-5533.0004072
    Publisher: ASCE
    Abstract: The mechanical properties of wood tend to decrease with increasing temperature under normal atmospheric conditions. A pyrolysis zone develops inside wood when it catches fire, and the surface is charred; it is important to understand the mechanical properties of the wood under the charred surface. In this study, the mechanical properties of Douglas fir wood, such as its compressive, tensile, and bending strengths, were measured under nitrogen atmosphere at nine temperatures between 20°C and 280°C for exposure times ranging from 60 to 120  min. The results indicated that the wood’s mechanical properties under the nitrogen atmosphere (i.e., oxygen-depleted conditions) decreased with increasing temperature, and the exposure time had little effect on the investigated properties. The mechanical properties of the wood under the charred surface exhibited a nonlinear decrease with increasing temperature due to the hydrolysis reactions. The mechanical properties were accurately described by temperature-dependent equations combining a linear model with three polynomial functions. Scanning electron microscopy revealed that high temperatures in the oxygen-free environment induced severe microstructural damage to the wood.
    • Download: (1.781Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Properties of Douglas Fir Wood at Elevated Temperatures under Nitrogen Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281942
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorKong Yue
    contributor authorJinhao Wu
    contributor authorFeng Wang
    contributor authorZhangjing Chen
    contributor authorWeidong Lu
    date accessioned2022-05-07T20:03:41Z
    date available2022-05-07T20:03:41Z
    date issued2021-11-23
    identifier other(ASCE)MT.1943-5533.0004072.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281942
    description abstractThe mechanical properties of wood tend to decrease with increasing temperature under normal atmospheric conditions. A pyrolysis zone develops inside wood when it catches fire, and the surface is charred; it is important to understand the mechanical properties of the wood under the charred surface. In this study, the mechanical properties of Douglas fir wood, such as its compressive, tensile, and bending strengths, were measured under nitrogen atmosphere at nine temperatures between 20°C and 280°C for exposure times ranging from 60 to 120  min. The results indicated that the wood’s mechanical properties under the nitrogen atmosphere (i.e., oxygen-depleted conditions) decreased with increasing temperature, and the exposure time had little effect on the investigated properties. The mechanical properties of the wood under the charred surface exhibited a nonlinear decrease with increasing temperature due to the hydrolysis reactions. The mechanical properties were accurately described by temperature-dependent equations combining a linear model with three polynomial functions. Scanning electron microscopy revealed that high temperatures in the oxygen-free environment induced severe microstructural damage to the wood.
    publisherASCE
    titleMechanical Properties of Douglas Fir Wood at Elevated Temperatures under Nitrogen Conditions
    typeJournal Paper
    journal volume34
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004072
    journal fristpage04021434
    journal lastpage04021434-11
    page11
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian