YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on the Influence of Size Effects on Compressive Dynamic Behavior of Lightweight Concrete

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 001::page 04021411
    Author:
    Zhenpeng Yu
    ,
    Rui Tang
    ,
    Zhaoyuan Guo
    ,
    Qiao Huang
    DOI: 10.1061/(ASCE)MT.1943-5533.0004052
    Publisher: ASCE
    Abstract: To study the impact of the strain rate effect and size effect on the compressive dynamic behavior of lightweight concrete (LC), 3 cube sizes and 10 strain rates were set up, and uniaxial compression tests were conducted utilizing a servohydraulic compression-testing machine. The failure modes and compressive strength of LC under varying load cases were obtained via testing. Following an examination of the change law of strain rate effect and size effect on failure modes and compressive strength and a discussion of the relevant literature on normal-weight concrete for comparison and assessment, the primary conclusions obtained are as follows: under a strain rate effect, failure modes of LC develop from vertical cracks with an even distribution at a low strain rate to oblique cracks dominant at a high strain rate, which resembles that of normal-weight concrete. It is found that as the strain rate rises, the compressive strength of LC gradually increases while the percentage increase in the compressive strength gradually decreases withthe rise of cube sizes affected by the strain rate. The compressive strength of LC at three varying cube sizes (70, 100, and 150 mm) is increased by 53.70%, 44.71%, and 33.76%, respectively. The compressive strength of LC gradually decreases as the cube size increases. The higher the strain rate, the greater the percentage decrease of the compressive strength of LC due to size effects. The percentage decrease in the compressive strength of LC at different strain rates is between 18.24% and 28.85% under the size effect. The influence of the strain rate effect and size effect on the compressive strength of LC is more obvious than on the compressive strength of normal-weight concrete. In this study, the coupling effects of strain rate and size on the compressive strength of LC were examined from a quantitative perspective. The findings of the study have important implications for project applications and model tests of LC.
    • Download: (817.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on the Influence of Size Effects on Compressive Dynamic Behavior of Lightweight Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281923
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZhenpeng Yu
    contributor authorRui Tang
    contributor authorZhaoyuan Guo
    contributor authorQiao Huang
    date accessioned2022-05-07T20:02:33Z
    date available2022-05-07T20:02:33Z
    date issued2021-10-28
    identifier other(ASCE)MT.1943-5533.0004052.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281923
    description abstractTo study the impact of the strain rate effect and size effect on the compressive dynamic behavior of lightweight concrete (LC), 3 cube sizes and 10 strain rates were set up, and uniaxial compression tests were conducted utilizing a servohydraulic compression-testing machine. The failure modes and compressive strength of LC under varying load cases were obtained via testing. Following an examination of the change law of strain rate effect and size effect on failure modes and compressive strength and a discussion of the relevant literature on normal-weight concrete for comparison and assessment, the primary conclusions obtained are as follows: under a strain rate effect, failure modes of LC develop from vertical cracks with an even distribution at a low strain rate to oblique cracks dominant at a high strain rate, which resembles that of normal-weight concrete. It is found that as the strain rate rises, the compressive strength of LC gradually increases while the percentage increase in the compressive strength gradually decreases withthe rise of cube sizes affected by the strain rate. The compressive strength of LC at three varying cube sizes (70, 100, and 150 mm) is increased by 53.70%, 44.71%, and 33.76%, respectively. The compressive strength of LC gradually decreases as the cube size increases. The higher the strain rate, the greater the percentage decrease of the compressive strength of LC due to size effects. The percentage decrease in the compressive strength of LC at different strain rates is between 18.24% and 28.85% under the size effect. The influence of the strain rate effect and size effect on the compressive strength of LC is more obvious than on the compressive strength of normal-weight concrete. In this study, the coupling effects of strain rate and size on the compressive strength of LC were examined from a quantitative perspective. The findings of the study have important implications for project applications and model tests of LC.
    publisherASCE
    titleExperimental Study on the Influence of Size Effects on Compressive Dynamic Behavior of Lightweight Concrete
    typeJournal Paper
    journal volume34
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004052
    journal fristpage04021411
    journal lastpage04021411-13
    page13
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian