YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical and Microstructural Characterization of Carbon Nanofiber–Reinforced Geopolymer Nanocomposite Based on Lunar Regolith Simulant

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 001::page 04021387
    Author:
    Rongrong Zhang
    ,
    Siqi Zhou
    ,
    Feng Li
    ,
    Yufeng Bi
    ,
    Xingyi Zhu
    DOI: 10.1061/(ASCE)MT.1943-5533.0004025
    Publisher: ASCE
    Abstract: Using the Moon’s natural resources to build infrastructure is the first step toward lunar colonization. Lunar regolith, rich in aluminosilicate, has the potential to prepare geopolymer for construction. In this paper, carbon nanofibers (CNFs) were added to geopolymers based on lunar regolith simulant, aiming at reinforcing mechanical and microstructural properties. A ball-milling method of CNF dispersion into the lunar regolith simulant was evaluated. The mechanical properties of the resulting geopolymer nanocomposites was investigated. X-ray diffractometry, scanning electron microscopy, Fourier transform infrared spectrometry, and mercury intrusion porosimetry were used to characterize the microstructural properties. The results indicated that the mechanical properties were improved by CNFs and that the optimal content was 0.3% by weight. Also, flexural strength, Young’s modulus, flexural toughness, peak displacement, and compressive strength were reinforced by 34.8%, 7.5%, 83.9%, 21.4%, and 13.1%, respectively. Microstructural results suggested that the CNFs acted as nucleation, fillers, and bridges in the nanocomposites, leading to lower porosity, higher energy requirement for failure, and higher mechanical properties, which are considerable for lunar-based construction.
    • Download: (3.186Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical and Microstructural Characterization of Carbon Nanofiber–Reinforced Geopolymer Nanocomposite Based on Lunar Regolith Simulant

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281892
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorRongrong Zhang
    contributor authorSiqi Zhou
    contributor authorFeng Li
    contributor authorYufeng Bi
    contributor authorXingyi Zhu
    date accessioned2022-05-07T20:00:37Z
    date available2022-05-07T20:00:37Z
    date issued2021-10-21
    identifier other(ASCE)MT.1943-5533.0004025.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281892
    description abstractUsing the Moon’s natural resources to build infrastructure is the first step toward lunar colonization. Lunar regolith, rich in aluminosilicate, has the potential to prepare geopolymer for construction. In this paper, carbon nanofibers (CNFs) were added to geopolymers based on lunar regolith simulant, aiming at reinforcing mechanical and microstructural properties. A ball-milling method of CNF dispersion into the lunar regolith simulant was evaluated. The mechanical properties of the resulting geopolymer nanocomposites was investigated. X-ray diffractometry, scanning electron microscopy, Fourier transform infrared spectrometry, and mercury intrusion porosimetry were used to characterize the microstructural properties. The results indicated that the mechanical properties were improved by CNFs and that the optimal content was 0.3% by weight. Also, flexural strength, Young’s modulus, flexural toughness, peak displacement, and compressive strength were reinforced by 34.8%, 7.5%, 83.9%, 21.4%, and 13.1%, respectively. Microstructural results suggested that the CNFs acted as nucleation, fillers, and bridges in the nanocomposites, leading to lower porosity, higher energy requirement for failure, and higher mechanical properties, which are considerable for lunar-based construction.
    publisherASCE
    titleMechanical and Microstructural Characterization of Carbon Nanofiber–Reinforced Geopolymer Nanocomposite Based on Lunar Regolith Simulant
    typeJournal Paper
    journal volume34
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004025
    journal fristpage04021387
    journal lastpage04021387-12
    page12
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian