YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rheology, Setting Time, and Compressive Strength of Class F Fly Ash–Based Geopolymer Binder Containing Ordinary Portland Cement

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 001::page 04021375
    Author:
    Arash Nikvar-Hassani
    ,
    Lino Manjarrez
    ,
    Lianyang Zhang
    DOI: 10.1061/(ASCE)MT.1943-5533.0004008
    Publisher: ASCE
    Abstract: This paper investigates the incorporation of ordinary portland cement (OPC) to adjust/improve the workability, setting time, and compressive strength of Class F fly ash (FA)–based geopolymer binder. The geopolymer binder specimens were produced by mixing OPC with FA at a dosage of 0%, 5%, 10%, 15%, and 20% by weight of FA, respectively, and then mixing the mixture with a blended sodium silicate (SS) and sodium hydroxide (SH) solution at a SH concentration of 5 M and a SS/SH ratio of 1. A water-to-solid (W/S) ratio of 0.35, 0.40, 0.45, and 0.50, respectively, was used in preparing the specimens. The viscosity and setting time of the fresh geopolymer binder were measured by using a coaxial cylinder viscometer and a Vicat apparatus, respectively. The specimens were cured at 35°C in an oven for 7 days before tested to measure the unconfined compressive strength (UCS). The results show that the viscosity of the geopolymer binder increases with higher OPC content and lower W/S ratio. The addition of OPC reduces the setting time. The shortest initial and final setting times of 16 and 46 min, respectively, were obtained at W/S=0.35 and 20% by weight OPC. The incorporation of OPC increases the UCS of the geopolymer binder. The highest UCS of 42.4 MPa was obtained at W/S=0.35 and 20% by weight OPC. Microstructural and chemical analyses including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were also carried out and the results indicate that the addition of OPC produces a denser microstructure by the formation of calcium silicate hydrate (CSH) gel along with geopolymer gel.
    • Download: (1.741Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rheology, Setting Time, and Compressive Strength of Class F Fly Ash–Based Geopolymer Binder Containing Ordinary Portland Cement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281875
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorArash Nikvar-Hassani
    contributor authorLino Manjarrez
    contributor authorLianyang Zhang
    date accessioned2022-05-07T19:59:28Z
    date available2022-05-07T19:59:28Z
    date issued2021-10-18
    identifier other(ASCE)MT.1943-5533.0004008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281875
    description abstractThis paper investigates the incorporation of ordinary portland cement (OPC) to adjust/improve the workability, setting time, and compressive strength of Class F fly ash (FA)–based geopolymer binder. The geopolymer binder specimens were produced by mixing OPC with FA at a dosage of 0%, 5%, 10%, 15%, and 20% by weight of FA, respectively, and then mixing the mixture with a blended sodium silicate (SS) and sodium hydroxide (SH) solution at a SH concentration of 5 M and a SS/SH ratio of 1. A water-to-solid (W/S) ratio of 0.35, 0.40, 0.45, and 0.50, respectively, was used in preparing the specimens. The viscosity and setting time of the fresh geopolymer binder were measured by using a coaxial cylinder viscometer and a Vicat apparatus, respectively. The specimens were cured at 35°C in an oven for 7 days before tested to measure the unconfined compressive strength (UCS). The results show that the viscosity of the geopolymer binder increases with higher OPC content and lower W/S ratio. The addition of OPC reduces the setting time. The shortest initial and final setting times of 16 and 46 min, respectively, were obtained at W/S=0.35 and 20% by weight OPC. The incorporation of OPC increases the UCS of the geopolymer binder. The highest UCS of 42.4 MPa was obtained at W/S=0.35 and 20% by weight OPC. Microstructural and chemical analyses including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were also carried out and the results indicate that the addition of OPC produces a denser microstructure by the formation of calcium silicate hydrate (CSH) gel along with geopolymer gel.
    publisherASCE
    titleRheology, Setting Time, and Compressive Strength of Class F Fly Ash–Based Geopolymer Binder Containing Ordinary Portland Cement
    typeJournal Paper
    journal volume34
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004008
    journal fristpage04021375
    journal lastpage04021375-13
    page13
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian