YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Risk Propagation in Multilayer Heterogeneous Network of Coupled System of Large Engineering Project

    Source: Journal of Management in Engineering:;2022:;Volume ( 038 ):;issue: 003::page 04022003
    Author:
    Yun Chen
    ,
    Liping Zhu
    ,
    Zhigen Hu
    ,
    Shu Chen
    ,
    Xiazhong Zheng
    DOI: 10.1061/(ASCE)ME.1943-5479.0001022
    Publisher: ASCE
    Abstract: Because of the long duration, multiplicity of technical disciplines, large number of project stakeholders, and high levels of complexity and uncertainty, project risk propagation control in large engineering projects (LEPs) is an enormous challenge for project managers. Although previous research has attained many risk propagation achievements regarding complex systems, complex coupled system modeling ignores the heterogeneity of the organizational structure of the actual LEPs, which affects the reliability of the calculated risk propagation results. To bridge this gap, this paper abstracts the LEP structure into a multilayer heterogeneous network comprising the stakeholder network and the project schedule network and proposes a method for characterizing the coupling relationship between two layers of the heterogeneous network. Then, the multiple uncertainties in risk propagation are greatly considered, and a risk propagation model is established based on the multilayer heterogeneous network and improved related schedule risk analysis model (CSRAM). Finally, the proposed model is applied to determine the delayed payment risk propagation in an actual LEP to verify the feasibility of the proposed model. The results indicate the following: (1) the delayed payment risk of a stakeholder evolves into a delay in the entire project; (2) several groups of comparative simulation experiments show that the proposed model, which considers multiple uncertainties and actual networks, includes more comprehensive and valuable risk information; (3) the multiple uncertainties of risk propagation are gradually superimposed with the increase in the number of construction activities affected by risk propagation; and (4) controlling for risk factors that have a high degree of influence and a large negative impact is an effective measure for blocking risk propagation across multilayer networks. This research lays an important foundation for risk propagation control in LEPs and contributes to the extension of the current theory of risk propagation in complex systems.
    • Download: (2.485Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Risk Propagation in Multilayer Heterogeneous Network of Coupled System of Large Engineering Project

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281838
    Collections
    • Journal of Management in Engineering

    Show full item record

    contributor authorYun Chen
    contributor authorLiping Zhu
    contributor authorZhigen Hu
    contributor authorShu Chen
    contributor authorXiazhong Zheng
    date accessioned2022-05-07T19:56:53Z
    date available2022-05-07T19:56:53Z
    date issued2022-01-28
    identifier other(ASCE)ME.1943-5479.0001022.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281838
    description abstractBecause of the long duration, multiplicity of technical disciplines, large number of project stakeholders, and high levels of complexity and uncertainty, project risk propagation control in large engineering projects (LEPs) is an enormous challenge for project managers. Although previous research has attained many risk propagation achievements regarding complex systems, complex coupled system modeling ignores the heterogeneity of the organizational structure of the actual LEPs, which affects the reliability of the calculated risk propagation results. To bridge this gap, this paper abstracts the LEP structure into a multilayer heterogeneous network comprising the stakeholder network and the project schedule network and proposes a method for characterizing the coupling relationship between two layers of the heterogeneous network. Then, the multiple uncertainties in risk propagation are greatly considered, and a risk propagation model is established based on the multilayer heterogeneous network and improved related schedule risk analysis model (CSRAM). Finally, the proposed model is applied to determine the delayed payment risk propagation in an actual LEP to verify the feasibility of the proposed model. The results indicate the following: (1) the delayed payment risk of a stakeholder evolves into a delay in the entire project; (2) several groups of comparative simulation experiments show that the proposed model, which considers multiple uncertainties and actual networks, includes more comprehensive and valuable risk information; (3) the multiple uncertainties of risk propagation are gradually superimposed with the increase in the number of construction activities affected by risk propagation; and (4) controlling for risk factors that have a high degree of influence and a large negative impact is an effective measure for blocking risk propagation across multilayer networks. This research lays an important foundation for risk propagation control in LEPs and contributes to the extension of the current theory of risk propagation in complex systems.
    publisherASCE
    titleRisk Propagation in Multilayer Heterogeneous Network of Coupled System of Large Engineering Project
    typeJournal Paper
    journal volume38
    journal issue3
    journal titleJournal of Management in Engineering
    identifier doi10.1061/(ASCE)ME.1943-5479.0001022
    journal fristpage04022003
    journal lastpage04022003-13
    page13
    treeJournal of Management in Engineering:;2022:;Volume ( 038 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian