YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Adaptive Neurofuzzy Inference System for the Assessment of Change Order Management Performance in Construction

    Source: Journal of Management in Engineering:;2021:;Volume ( 038 ):;issue: 002::page 04021098
    Author:
    Khalid K. Naji
    ,
    Murat Gunduz
    ,
    Ayman F. Naser
    DOI: 10.1061/(ASCE)ME.1943-5479.0001017
    Publisher: ASCE
    Abstract: Change order management is a major challenge in the construction business due to the associated disputes, claims, productivity losses, delays, and cost implications. As a result, effective change order management (COM) is required to ensure the success of construction projects. The cost overruns and schedule delays caused by change orders have been recognized and researched by scholars and construction practitioners for decades. However, in modern construction management, there are additional performance factors that affect the performance of COM throughout construction activities. This study contributes to existing knowledge by identifying a comprehensive and multidimensional set of performance factors affecting COM and developing an adaptive neurofuzzy inference system (ANFIS) to model these factors quantitatively and evaluate COM implementation performance in the construction industry. Through an exhaustive literature search and engagement with specialists, 49 COM performance parameters were identified and then classified into seven groups. Then, 334 responses from building specialists were gathered via an online survey to determine the relative importance of each component and group. The obtained data were examined for normality, reliability, and independence and then analyzed using the Relative Importance Index (RII). The ANFIS model was constructed using a fuzzy clustering approach that took into account the clustering of input and output data sets, the fuzziness level of clusters, and the optimization of five Gaussian membership functions. The ANFIS model was subsequently validated using qualitative structural and behavioral testing (k-fold cross-validation). The findings of this study can be used as guidance in construction management for managing and evaluating the overall COM performance index of construction projects.
    • Download: (1.741Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Adaptive Neurofuzzy Inference System for the Assessment of Change Order Management Performance in Construction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281834
    Collections
    • Journal of Management in Engineering

    Show full item record

    contributor authorKhalid K. Naji
    contributor authorMurat Gunduz
    contributor authorAyman F. Naser
    date accessioned2022-05-07T19:56:40Z
    date available2022-05-07T19:56:40Z
    date issued2021-12-28
    identifier other(ASCE)ME.1943-5479.0001017.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281834
    description abstractChange order management is a major challenge in the construction business due to the associated disputes, claims, productivity losses, delays, and cost implications. As a result, effective change order management (COM) is required to ensure the success of construction projects. The cost overruns and schedule delays caused by change orders have been recognized and researched by scholars and construction practitioners for decades. However, in modern construction management, there are additional performance factors that affect the performance of COM throughout construction activities. This study contributes to existing knowledge by identifying a comprehensive and multidimensional set of performance factors affecting COM and developing an adaptive neurofuzzy inference system (ANFIS) to model these factors quantitatively and evaluate COM implementation performance in the construction industry. Through an exhaustive literature search and engagement with specialists, 49 COM performance parameters were identified and then classified into seven groups. Then, 334 responses from building specialists were gathered via an online survey to determine the relative importance of each component and group. The obtained data were examined for normality, reliability, and independence and then analyzed using the Relative Importance Index (RII). The ANFIS model was constructed using a fuzzy clustering approach that took into account the clustering of input and output data sets, the fuzziness level of clusters, and the optimization of five Gaussian membership functions. The ANFIS model was subsequently validated using qualitative structural and behavioral testing (k-fold cross-validation). The findings of this study can be used as guidance in construction management for managing and evaluating the overall COM performance index of construction projects.
    publisherASCE
    titleAn Adaptive Neurofuzzy Inference System for the Assessment of Change Order Management Performance in Construction
    typeJournal Paper
    journal volume38
    journal issue2
    journal titleJournal of Management in Engineering
    identifier doi10.1061/(ASCE)ME.1943-5479.0001017
    journal fristpage04021098
    journal lastpage04021098-17
    page17
    treeJournal of Management in Engineering:;2021:;Volume ( 038 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian