YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Solving the Negative Earnings Dilemma of Multistage Bidding in Public Construction and Infrastructure Projects: A Game Theory–Based Approach

    Source: Journal of Management in Engineering:;2021:;Volume ( 038 ):;issue: 002::page 04021087
    Author:
    Muaz O. Ahmed
    ,
    Islam H. El-adaway
    ,
    Kalyn T. Coatney
    DOI: 10.1061/(ASCE)ME.1943-5479.0000997
    Publisher: ASCE
    Abstract: With the tremendous increase in spending on public projects, contractors need to employ efficient and effective bidding strategies to cope with the competitive bidding environment. Usually, general contractors carry a portion of the work and subcontract other parts to eventually submit a holistic joint bid. This bidding setting is referred to as multistage bidding where subcontractors submit their quotations/bids to the general contractor, after which the general contractor submits a final joint bid for the whole project. In a multistage bidding environment, general contractors may be faced with an increase in the probability of negative or below normal profits. Despite previous research efforts for developing bidding models, there is a need for the extension of existing literature to tackle the multistage bidding environment, referred to hereinafter as multistage game (MSG). As such, the goal of this paper is to develop a bidding model for the MSG. The authors followed a multistep research methodology comprised of: (1) defining MSG in terms of game theory; (2) deriving a game-theoretic bid function for general contractors to determine the final joint bid to submit in MSG; and (3) developing a simulation model for MSG, using a data from 2,235 US public infrastructure projects. Results demonstrate that the new bid function gives general contractors a competitive advantage by avoiding the occurrence of negative profits in their part of the project. Also, results show a reduction in the occurrence and magnitude of the negative profits in relation to the final joint bids. This research significantly contributes to the body of knowledge by providing an innovative bid function for MSG. In addition, it offers substantial practical benefits for general contractors by providing a tool that facilitates dealing with the inherent complexity and uncertainties related to actual cost estimation within the MSG decision-making process.
    • Download: (3.128Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Solving the Negative Earnings Dilemma of Multistage Bidding in Public Construction and Infrastructure Projects: A Game Theory–Based Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281814
    Collections
    • Journal of Management in Engineering

    Show full item record

    contributor authorMuaz O. Ahmed
    contributor authorIslam H. El-adaway
    contributor authorKalyn T. Coatney
    date accessioned2022-05-07T19:55:02Z
    date available2022-05-07T19:55:02Z
    date issued2021-11-19
    identifier other(ASCE)ME.1943-5479.0000997.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281814
    description abstractWith the tremendous increase in spending on public projects, contractors need to employ efficient and effective bidding strategies to cope with the competitive bidding environment. Usually, general contractors carry a portion of the work and subcontract other parts to eventually submit a holistic joint bid. This bidding setting is referred to as multistage bidding where subcontractors submit their quotations/bids to the general contractor, after which the general contractor submits a final joint bid for the whole project. In a multistage bidding environment, general contractors may be faced with an increase in the probability of negative or below normal profits. Despite previous research efforts for developing bidding models, there is a need for the extension of existing literature to tackle the multistage bidding environment, referred to hereinafter as multistage game (MSG). As such, the goal of this paper is to develop a bidding model for the MSG. The authors followed a multistep research methodology comprised of: (1) defining MSG in terms of game theory; (2) deriving a game-theoretic bid function for general contractors to determine the final joint bid to submit in MSG; and (3) developing a simulation model for MSG, using a data from 2,235 US public infrastructure projects. Results demonstrate that the new bid function gives general contractors a competitive advantage by avoiding the occurrence of negative profits in their part of the project. Also, results show a reduction in the occurrence and magnitude of the negative profits in relation to the final joint bids. This research significantly contributes to the body of knowledge by providing an innovative bid function for MSG. In addition, it offers substantial practical benefits for general contractors by providing a tool that facilitates dealing with the inherent complexity and uncertainties related to actual cost estimation within the MSG decision-making process.
    publisherASCE
    titleSolving the Negative Earnings Dilemma of Multistage Bidding in Public Construction and Infrastructure Projects: A Game Theory–Based Approach
    typeJournal Paper
    journal volume38
    journal issue2
    journal titleJournal of Management in Engineering
    identifier doi10.1061/(ASCE)ME.1943-5479.0000997
    journal fristpage04021087
    journal lastpage04021087-19
    page19
    treeJournal of Management in Engineering:;2021:;Volume ( 038 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian