YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Constitutive Behavior and Ballistic Performance of Aerospace 2A16 Aluminum Alloy under Different Impact Velocities

    Source: Journal of Aerospace Engineering:;2022:;Volume ( 035 ):;issue: 004::page 04022033
    Author:
    Xulong Xi
    ,
    Xiaochuan Liu
    ,
    Chunyu Bai
    ,
    Xianfeng Yang
    ,
    Jialing Yang
    DOI: 10.1061/(ASCE)AS.1943-5525.0001432
    Publisher: ASCE
    Abstract: 2A16 aluminum alloys possess outstanding mechanical characteristics such as high specific strength and remarkable heat-resistance capacity. Figuring out the dynamic mechanical performance of 2A16 aluminum alloy over a large range of strain rates is beneficial to further broaden its application as crucial civil and military structures under extreme loading. This paper mainly focused on the mechanical properties and ballistic impact capacity of 2A16 aluminum alloy under different strain rates. Firstly, the quasi-static, intermediate strain rates and high strain rate mechanical experiments of 2A16 aluminum alloy specimens were conducted using an electronic universal testing machine, a high velocity hydraulic servotesting machine, and a split Hopkinson pressure bar (SHPB) at room temperature, which aims to acquire its dynamic mechanical properties at different strain rates and the fracture behaviors under different stress conditions. Then, the modified Johnson-Cook constitutive model and the Johnson-Cook fracture model were fitted based on the stress-strain relationships obtained from the tests. Finally, the ballistic impact experiments were carried out by a spherical nosed projectile striking on square 2A16 aluminum plates with the incident velocities ranging from 150–190  m/s. Numerical simulations based the nonlinear explicit finite-element (FE) code Ls-dyna were conducted to reproduce the ballistic impact tests. The ballistic limit velocity of 2A16 aluminum was obtained through the Recht-Ipson empirical model and the predicted results agreed well with the numerical results. The results obtained from this study can contribute to the design and optimization of 2A16 aluminum aerospace engineering structures with better impact protection capacity.
    • Download: (1.983Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Constitutive Behavior and Ballistic Performance of Aerospace 2A16 Aluminum Alloy under Different Impact Velocities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281783
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorXulong Xi
    contributor authorXiaochuan Liu
    contributor authorChunyu Bai
    contributor authorXianfeng Yang
    contributor authorJialing Yang
    date accessioned2022-05-07T19:53:22Z
    date available2022-05-07T19:53:22Z
    date issued2022-03-17
    identifier other(ASCE)AS.1943-5525.0001432.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281783
    description abstract2A16 aluminum alloys possess outstanding mechanical characteristics such as high specific strength and remarkable heat-resistance capacity. Figuring out the dynamic mechanical performance of 2A16 aluminum alloy over a large range of strain rates is beneficial to further broaden its application as crucial civil and military structures under extreme loading. This paper mainly focused on the mechanical properties and ballistic impact capacity of 2A16 aluminum alloy under different strain rates. Firstly, the quasi-static, intermediate strain rates and high strain rate mechanical experiments of 2A16 aluminum alloy specimens were conducted using an electronic universal testing machine, a high velocity hydraulic servotesting machine, and a split Hopkinson pressure bar (SHPB) at room temperature, which aims to acquire its dynamic mechanical properties at different strain rates and the fracture behaviors under different stress conditions. Then, the modified Johnson-Cook constitutive model and the Johnson-Cook fracture model were fitted based on the stress-strain relationships obtained from the tests. Finally, the ballistic impact experiments were carried out by a spherical nosed projectile striking on square 2A16 aluminum plates with the incident velocities ranging from 150–190  m/s. Numerical simulations based the nonlinear explicit finite-element (FE) code Ls-dyna were conducted to reproduce the ballistic impact tests. The ballistic limit velocity of 2A16 aluminum was obtained through the Recht-Ipson empirical model and the predicted results agreed well with the numerical results. The results obtained from this study can contribute to the design and optimization of 2A16 aluminum aerospace engineering structures with better impact protection capacity.
    publisherASCE
    titleConstitutive Behavior and Ballistic Performance of Aerospace 2A16 Aluminum Alloy under Different Impact Velocities
    typeJournal Paper
    journal volume35
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001432
    journal fristpage04022033
    journal lastpage04022033-13
    page13
    treeJournal of Aerospace Engineering:;2022:;Volume ( 035 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian