YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Gray Wolf Optimization for Scheduling Irrigation Water

    Source: Journal of Irrigation and Drainage Engineering:;2022:;Volume ( 148 ):;issue: 007::page 04022020
    Author:
    Kazem Shahverdi
    ,
    J. M. Maestre
    DOI: 10.1061/(ASCE)IR.1943-4774.0001688
    Publisher: ASCE
    Abstract: Although various optimization algorithms have been developed for operational purposes, the development of new optimization algorithms is still an open problem due to the complex system of irrigation canals that must be addressed. Recently, a new algorithm named gray wolf optimization (GWO) has been introduced and applied in different contexts. It mimics the social hierarchy and hunting behavior of gray wolves in nature. In this research, GWO was formulated, developed, and linked to irrigation canal system simulation (ICSS) to schedule water delivery. A fitness (optimization) function was defined according to the standard water delivery performance indicators. Normal and water shortage operational scenarios in the E1R1 Dez canal in Iran were tested and evaluated. The results revealed that GWO is a powerful optimization method and avoids local optimal points when normal conditions exist. However, it has relatively poor performance in water shortage conditions in which there is not enough water. Water depth variations remain inside acceptable margins. Its results were comparable to fuzzy state, action, reward, state, action (SARSA) learning (FSL) in the same canal, showing a value of maximum absolute error (MAE) and integral absolute error (IAE) of 10.7% and 9.2%, respectively, and it can distribute water between turnouts adequately, efficiently, equitably, and dependably in normal conditions.
    • Download: (1.177Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Gray Wolf Optimization for Scheduling Irrigation Water

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4281713
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorKazem Shahverdi
    contributor authorJ. M. Maestre
    date accessioned2022-05-07T19:50:01Z
    date available2022-05-07T19:50:01Z
    date issued2022-04-19
    identifier other(ASCE)IR.1943-4774.0001688.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281713
    description abstractAlthough various optimization algorithms have been developed for operational purposes, the development of new optimization algorithms is still an open problem due to the complex system of irrigation canals that must be addressed. Recently, a new algorithm named gray wolf optimization (GWO) has been introduced and applied in different contexts. It mimics the social hierarchy and hunting behavior of gray wolves in nature. In this research, GWO was formulated, developed, and linked to irrigation canal system simulation (ICSS) to schedule water delivery. A fitness (optimization) function was defined according to the standard water delivery performance indicators. Normal and water shortage operational scenarios in the E1R1 Dez canal in Iran were tested and evaluated. The results revealed that GWO is a powerful optimization method and avoids local optimal points when normal conditions exist. However, it has relatively poor performance in water shortage conditions in which there is not enough water. Water depth variations remain inside acceptable margins. Its results were comparable to fuzzy state, action, reward, state, action (SARSA) learning (FSL) in the same canal, showing a value of maximum absolute error (MAE) and integral absolute error (IAE) of 10.7% and 9.2%, respectively, and it can distribute water between turnouts adequately, efficiently, equitably, and dependably in normal conditions.
    publisherASCE
    titleGray Wolf Optimization for Scheduling Irrigation Water
    typeJournal Paper
    journal volume148
    journal issue7
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0001688
    journal fristpage04022020
    journal lastpage04022020-9
    page9
    treeJournal of Irrigation and Drainage Engineering:;2022:;Volume ( 148 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian