Show simple item record

contributor authorLi, Ji-Chen
contributor authorZhu, Hui-Ren
contributor authorLiu, Cun-Liang
contributor authorYe, Lin
contributor authorZhou, Dao-En
date accessioned2022-02-06T05:53:34Z
date available2022-02-06T05:53:34Z
date copyright5/3/2021 12:00:00 AM
date issued2021
identifier issn0889-504X
identifier otherturbo_143_8_081014.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278993
description abstractGas turbines have been widely used. With the continuous improvement of the performance of gas turbines, the turbine inlet temperature has greatly exceeded the heat-resistance limit of the turbine blade material, so advanced cooling technology is required. The film cooling effectiveness distribution over the blade under the effect of wake was obtained by the pressure-sensitive paint (PSP) technique. The test blade has five rows of chevron film holes on the pressure side, three rows of cylindrical film holes on the leading edge, and three rows of chevron film holes on the suction side. The mainstream Reynolds number is 130,000 based on the blade chord length, and the mainstream turbulence intensity is 2.7%. The upstream wake was simulated by the spoken-wheel type wake generator. The film cooling effectiveness was measured at three wake Strouhal numbers (0, 0.12, and 0.36) and three mass flux ratios (MFR1, MFR2, and MFR3). The results show that the increase of mass flux ratio leads to a decrease of the film cooling effectiveness on the suction surface. In the wake condition, the effect of mass flux ratio is weakened. Wake leads to a marked decrease of the film cooling effectiveness over most blade surface except for the surface near leading edge on the pressure surface. In the high mass flux ratio condition, the effect of wake on the film cooling effectiveness is weakened on the suction surface and strengthened on the pressure surface.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental Study on Film Cooling Effectiveness of Blade With Chevron-Shaped Holes Under Wake Influence
typeJournal Paper
journal volume143
journal issue8
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4050449
journal fristpage081014-1
journal lastpage081014-8
page8
treeJournal of Turbomachinery:;2021:;volume( 143 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record